Climatic Change

, Volume 123, Issue 3–4, pp 559–569 | Cite as

The impact of technology availability on the timing and costs of emission reductions for achieving long-term climate targets

  • Jasper van Vliet
  • Andries F. Hof
  • Angelica Mendoza Beltran
  • Maarten van den Berg
  • Sebastiaan Deetman
  • Michel G. J. den Elzen
  • Paul L. Lucas
  • Detlef P. van Vuuren
Article

Abstract

While most long-term mitigation scenario studies build on a broad portfolio of mitigation technologies, there is quite some uncertainty about the availability and reduction potential of these technologies. This study explores the impacts of technology limitations on greenhouse gas emission reductions using the integrated model IMAGE. It shows that the required short-term emission reductions to achieve long-term radiative forcing targets strongly depend on assumptions on the availability and potential of mitigation technologies. Limited availability of mitigation technologies which are relatively important in the long run implies that lower short-term emission levels are required. For instance, limited bio-energy availability reduces the optimal 2020 emission level by more than 4 GtCO2eq in order to compensate the reduced availability of negative emissions from bioenergy and carbon capture and storage (BECCS) in the long run. On the other hand, reduced mitigation potential of options that are used in 2020 can also lead to a higher optimal level for 2020 emissions. The results also show the critical role of BECCS for achieving low radiative forcing targets in IMAGE. Without these technologies achieving these targets become much more expensive or even infeasible.

Supplementary material

10584_2013_961_MOESM1_ESM.docx (30 kb)
ESM 1(DOCX 30.1 KB)

References

  1. Azar C, Lindgren K, Obersteiner M et al (2010) The feasibility of low CO2 concentration targets and the role of bio-energy with carbon capture and storage (BECCS). Clim Change 100:195–202CrossRefGoogle Scholar
  2. Bouwman AF, Kram T, Klein Goldewijk K (2006) Integrated modelling of global environmental change. An overview of IMAGE 2.4. Netherlands Environmental Assessment Agency, BilthovenGoogle Scholar
  3. Clarke L, Edmonds J, Krey V et al (2009) International climate policy architectures: overview of the EMF 22 International Scenarios. Energy Econ 31 (SUPPL 2):S64–S81Google Scholar
  4. den Elzen M, Meinshausen M, van Vuuren D (2007) Multi-gas emission envelopes to meet greenhouse gas concentration targets: costs versus certainty of limiting temperature increase. Glob Environ Change 17:260–280CrossRefGoogle Scholar
  5. Forster P, Ramaswamy V, Artaxo P et al (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  6. GEA (2012) Global energy assessment—toward a sustainable future. Cambridge University Press, CambridgeGoogle Scholar
  7. Harnisch J, Klaus S, Wartmann S, Rhiemeier JM (2009) Development of F-gas module for TIMER model. ECOFYS, NurembergGoogle Scholar
  8. IPCC (2007) In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  9. Knopf B, Edenhofer O, Flachsland C et al (2010) Managing the low-carbon transition—From model results to policies. Energy J 31:223–245Google Scholar
  10. Krey V, Riahi K (2009) Implications of delayed participation and technology failure for the feasibility, costs, and likelihood of staying below temperature targets-Greenhouse gas mitigation scenarios for the 21st century. Energy Econ 31:S94–S106CrossRefGoogle Scholar
  11. Kriegler E, Tavoni M, Aboumahboub T et al (in review) Can we still meet 2°C with global climate action? The LIMITS study on implications of Durban Action Platform scenarios. Clim Change EconGoogle Scholar
  12. Kriegler E, Weyant JP, Blanford GJ et al. (2013) The role of technology for achieving climate policy objectives: overview of the EMF 27 study on technology and climate policy strategies. Clim Change. doi:10.1007/s10584-013-0953-7
  13. Lucas PL, van Vuuren DP, Olivier JGJ, den Elzen MGJ (2007) Long-term reduction potential of non-CO2 greenhouse gases. Environ Sci Policy 10:85–103CrossRefGoogle Scholar
  14. Meinshausen M, Raper SCB, Wigley TML (2011) Emulating coupled atmosphere–ocean and carbon cycle models with a simpler model, MAGICC6 - Part 1: model description and calibration. Atmos Chem Phys 11:1417–1456CrossRefGoogle Scholar
  15. O’Neill BC, Riahi K, Keppo I (2010) Mitigation implications of midcentury targets that preserve long-term climate policy options. Proc Natl Acad Sci U S A 107:1011–1016CrossRefGoogle Scholar
  16. OECD (2012) OECD environmental outlook to 2050. OECD, ParisCrossRefGoogle Scholar
  17. Pugh G, Clarke L, Marlay R et al (2011) Energy R&D portfolio analysis based on climate change mitigation. Energy Econ 33:634–643Google Scholar
  18. Riahi K, Kriegler E, Johnson N et al (2013) Locked into Copenhagen Pledges—Implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technological Forecasting and Social Change (in press)Google Scholar
  19. Rogelj J, Hare W, Lowe J et al (2011) Emission pathways consistent with a 2°C global temperature limit. Nature Clim Change 1:413–418Google Scholar
  20. Rogelj J, McCollum DL, O’Neill BC, Riahi K (2013) 2020 emissions levels required to limit warming to below 2°C. Nature Clim Change 3:405–412CrossRefGoogle Scholar
  21. UNEP (2012) The emissions gap report 2012. A UNEP Synthesis Report, UNEPGoogle Scholar
  22. UNFCCC (2011) Report of the Conference of the Parties on its seventeenth session, held in Durban from 28 November to 11 December 2011. Addendum. Part two: Action taken by the Conference of the Parties at its seventeenth session. Decision 2/CP.17: outcome of the work of the Ad Hoc Working Group on Long-term Cooperative Action under the Convention. FCCC/CP/2011/9/Add.1Google Scholar
  23. van Vliet J, den Elzen MGJ, van Vuuren DP (2009) Meeting radiative forcing targets under delayed participation. Energy Econ 31:S152–S162CrossRefGoogle Scholar
  24. van Vliet J, van den Berg M, Schaeffer M et al (2012) Copenhagen Accord Pledges imply higher costs for staying below 2°C warming—A letter. Clim Change 113:551–561Google Scholar
  25. van Vuuren DP (2007) Energy systems and climate change. Scenarios for an Uncertain Future, Science, Technology and Society., Utrecht University, UtrechtGoogle Scholar
  26. van Vuuren DP, Den Elzen MGJ, Lucas PL et al (2007) Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim Change 81:119–159Google Scholar
  27. van Vuuren DP, Kok MTJ, Girod B, Lucas PL, de Vries B (2012) Scenarios in Global Environmental Assessments: key characteristics and lessons for future use. Glob Environ Change 22:884–895CrossRefGoogle Scholar
  28. van Vuuren DP, Riahi K (2011) The relationship between short-term emissions and long-term concentration targets. Clim Change 104:793–801CrossRefGoogle Scholar
  29. van Vuuren DP, Deetman S, van Vliet J et al (2013) The role of negative CO2 emissions for reaching 2 °C-insights from integrated assessment modeling. Clim Change 118:15–27Google Scholar
  30. Velders GJM, Fahey DW, Daniel JS, McFarland M, Andersen SO (2009) The large contribution of projected HFC emissions to future climate forcing. Proc Natl Acad Sci U S A 106:10949–10954CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jasper van Vliet
    • 1
  • Andries F. Hof
    • 1
  • Angelica Mendoza Beltran
    • 1
  • Maarten van den Berg
    • 1
  • Sebastiaan Deetman
    • 1
  • Michel G. J. den Elzen
    • 1
  • Paul L. Lucas
    • 1
  • Detlef P. van Vuuren
    • 1
    • 2
  1. 1.PBL Netherlands Environmental Assessment AgencyBilthovenThe Netherlands
  2. 2.Department of GeosciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations