Results featured in this paper assume equal weighting for socioeconomic elements for the binning metrics. Additionally, as mentioned previously, we had enough expert judgments to analyze results according to two panels. Results for Panel A are discussed here. Results for Panel B are in Online Resource 5.
The first notable finding is that internally consistent combinations populate all five domains of the challenges space. Most of the combinations (850) lie along the diagonal for Low, Medium, or High challenges to mitigation and adaptation, and most of these lie in Medium and High challenges domains (see Fig. 2; this was also found for Panel B).
Within each domain, there are distinguishable characteristics across the combinations, which are summarized in Fig. 3. In this figure, each row describes a domain type, while each column represents a scenario element. Light cells indicate that the dominant outcome for the scenario element corresponds to a low challenge for mitigation or adaptation, while dark cells correspond to high challenges. Gray cells indicate medium challenges, while a spectrum indicates multiple outcomes (and thus multiple levels of challenges) were internally consistent. Speckled cells indicate elements that were not incorporated into the metrics for measuring challenges.Footnote 6 Arrows summarize the specific outcome for the socioeconomic element. For example, in the cell for challenges domain 1 (row) and the socioeconomic element of population (column), the downward sloping arrow indicates that the low trend was the dominant outcome, which corresponds to a low mitigation challenge (white cell). The cell for challenges domain 2 and the population column has three arrows; this indicates that no outcome was clearly dominant, which also means that the level of mitigation challenge for population for this domain spanned the spectrum of low, medium, and high challenges (spectrum of white, gray, black).
As expected, the challenges domain 1 has the most white cells, challenges domain 2 has the most gray cells, and challenges domain 3 has the most dark cells. The mixed domains (4 and 5) have combinations of white and dark cells. Domains with low challenges to mitigation (1 and 4) exhibit low global trends for population, energy intensity, and carbon intensity. In contrast, domains with high challenges to mitigation (3 and 5) exhibit high global trends for these elements. Medium trend outcomes consistently appeared across these elements for challenges domain 2, along with mixed trend outcomes. These findings were generally reproduced for Panel B.
Domains with low challenges to adaptation (1 and 5) exhibit high global trends for quality of governance. In contrast, domains with high challenges to adaptation (3 and 4) exhibit low global trends for quality of governance. Challenges domain 2 had medium outcomes for all socioeconomic elements most of the time, although mixed outcomes appeared for quality of governance and global innovation capacity. Finally, the Low challenges domain 1 is the only one characterized by high global trends in agricultural productivity, governance, income per capita, educational attainment, and low global trends for extreme poverty.
Unexpected patterns emerged as well. In the CIB analysis of judgments from Panel A, innovation capacity turned out to be most related to challenges to mitigation, whereas it was identified as relevant to challenges to adaptation by us (in section 2) and other scholarly literature (see discussion in Online Resource 1). CIB analysis results indicated that high global trends for innovation capacity were consistent most clearly with decreasing challenges to mitigation (see Fig. 3, domain 4; however, Panel B arrived at a different finding as discussed in Online Resource 5). Moreover, the high trend for innovation capacity in domain 4 does not give rise to high trends for global income per capita, low global trends for extreme poverty, or high trends in global educational attainment. Such trends are all medium for domain 4, which could mean that income growth, reductions in extreme poverty, and improvements in educational attainment are uneven globally. These relationships are apparent from investigating the judgments in Panel A as described in section 4 of Online Resource 1. However, because this analysis for challenges to adaptation was conceptualized at a globally aggregated scale, differences in trends across large world regions cannot be distinguished explicitly.
Additionally, domains with low challenges to mitigation but differing challenges for adaptation (domain 1 versus 4) can be distinguished by quality of governance. While the challenges domain 1 has low global trends for energy and carbon intensity coupled with a high global trend for quality of governance, domain 4 decouples this outcome. Governance may be a key socioeconomic element distinguishing the high adaptation challenges of domain 4 from the low adaptation challenges of domain 1. This interpretation is echoed by the low trend for quality of governance among combinations binned in challenges domain 3. Panel B also reproduced these findings.
Finally, it may appear curious that among the 1,000 consistent combinations, the vast majority had medium trends for most elements relevant to challenges to adaptation. This finding may not necessarily be considered meaningful, as globally averaged outcomes can mask divergences in local outcomes that this analysis does not capture. Additionally, results can differ under different weighting assumptions and under different panel judgments. More discussion of these issues is in Online Resource 5.
Nevertheless, the above findings can be used to revisit the specific cross-impact judgments and written statements provided by experts in their elicitation questionnaires. This requires investigating the distinctive trends summarized in Fig. 3 with the CIB matrix to begin archetypal descriptions of each domain. This procedure is described in section 4 of Online Resource 1. Here we present sketches of possible SSPs for each domain, based on the general characteristics summarized in Fig. 3.
SSP1
This world has low challenges to mitigation, as global population growth, energy intensity, and carbon intensity are low. These outcomes are made possible by a global trend in high quality of governance, as good governance encourages conditions for high educational attainment and high agricultural productivity across countries. In turn, these educational and agricultural outcomes reinforce sustained decreases in extreme poverty and increases in income per capita. High educational attainment also decreases fertility. Such beneficial social outcomes result in low challenges to adaptation. Additionally, the combined effects of increased wealth and good governance hasten trends for decreased energy intensity, which in turn hastens low carbon intensity.
SSP2a
This is a world where historical trends for socioeconomic elements continue by and large (i.e., the medium trend for the vast majority of elements). However, agricultural productivity gains do not keep pace with historical trends. Inertias that prevent greater agricultural productivity (in order of importance): continued water scarcity, quality of governance, rate of educational attainment, innovation capacity, and rate of energy-related technological change.
SSP3
This world has high challenges to mitigation, as global population growth, energy intensity, and carbon intensity are high. Challenges to adaptation are also high due to low agricultural productivity and low innovation capacity. These outcomes are due to a low global trend for quality of governance, as poor governance has negative effects permeating multiple socioeconomic elements. Weak states are less able to improve or maintain agricultural markets, regulate energy efficiency, or protect intellectual property. In turn, low innovation capacity keeps energy and carbon intensity high and agricultural productivity low.
SSP4
This world has low challenges to mitigation, where innovation capacity is high, energy-related technological change is fast, energy and carbon intensity are low, and population growth has a medium or low trend. However, in contrast to SSP1, the global quality of governance trend is low. Like SSP3, poor governance depresses the global trend for agricultural productivity, which increases challenges to adaptation. Additionally, low governance quality prevents substantial gains in educational attainment or income growth and prevents substantial decreases in extreme poverty. These qualities depict a divided world where innovation capacity and technological change are directed successfully toward mitigation challenges rather than toward the improvement of quality of life.
SSP5
This world is similar to SSP2 in that the historical trends of many socioeconomic elements continue. However, when innovation capacity is low, this reinforces high trends for energy and carbon intensity and low trends for agricultural productivity.Footnote 7
Sensitivity of findings
As suggested throughout the paper, there are multiple aspects of the study that potentially affect results. These include the expert judgments collected, the construction of metrics for binning combinations in the challenges space, and the decision of where to draw domain boundaries. Online Resource 5 examines the implications of alternative decisions for these. Nonetheless, under the equal-weight metric and domain boundaries featured in this paper, results based on judgments from Panel B corroborated many of the findings for Panel A.