Skip to main content

Advertisement

Log in

Relationship between projected changes in future climatic suitability and demographic and functional traits of forest tree species in Spain

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

The response of plant species to future climate conditions is probably dependent on their ecological characteristics, including climatic niche, demographic rates and functional traits. Using forest inventory data from 27 dominant woody species in Spanish forests, we explore the relationships between species characteristics and projected changes in their average climatic suitability (occurrence of suitable climatic conditions for a species in a given territory) obtained by empirical niche-based models, under a business-as-usual climate change scenario (A1, HadCM3, 2001–2100). We hypothesize that most species will suffer a decline in climatic suitability, with a less severe for species (i) currently living in more arid climates or exhibiting a broader current climatic niche; (ii) with higher current growth rates; (iii) with functional traits related to resistance to water deficits. The analysis confirm our hypothesis since apart from a few Mediterranean species, most species decrease their climatic suitability in the region under future climate, characterized by increased aridity. Also, species living in warmer locations or under a wider range of climatic conditions tend to experience less decrease in climatic suitability. As hypothesized, a positive relationship was detected between current relative growth rates and increase in future climatic suitability. Nevertheless, current tree mortality did not correlate with changes in future climatic suitability. In contrast with our hypothesis, functional traits did not show a clear relationship with changes in climate suitability; instead species often presented idiosyncratic responses that, in some cases, could reflect past management. These results suggest that the extrapolation of species performance to future climatic scenarios based on current patterns of dominance is constrained by factors other than species autoecology, particularly human activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albert CH, Grassein F, Schurr FM et al (2011) When and how should intraspecific variability be considered in trait-based plant ecology? Persp Plant Ecol Evol Syst 13:217–235

    Article  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684

    Article  Google Scholar 

  • Angert AL, Crozier LG, Rissler LJ et al (2011) Do species traits predict recent shifts at expanding range edges? Ecol Lett 14:677–689

    Article  Google Scholar 

  • Bigler C, Bräker OU, Bugmann H et al (2006) Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems 9:330–343

    Article  Google Scholar 

  • Bolós O, Vigo J, Masalles RM, Ninot JM (1990) Flora Manual dels Països Catalans. Pòrtic, Barcelona

    Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    Article  Google Scholar 

  • Burriel JA, Gracia C, Ibàñez JJ, et al. (2000–2004) Inventari Ecològic i Forestal de Catalunya. CREAF, Bellaterra, Spain

  • Carrion JS (2000) Past distribution and ecology of the cork oak (Quercus suber) in the Iberian Peninsula: a pollen-analytical approach. Divers Distrib 6:29–44

    Article  Google Scholar 

  • De Soto L, Olano JM, Rozas V et al (2010) Release of Juniperus thurifera woodlands from herbivore-mediated arrested succession in Spain. Appl Veg Sci 13:15–25

    Article  Google Scholar 

  • Dirección General de Conservación de la Naturaleza (2006) Tercer Inventario Forestal Nacional 1997–2006. Ministerio de Medio Ambiente, Madrid

    Google Scholar 

  • Do Amaral Franco J (1986) Juniperus. In: Castroviejo S, Laínz M, Montserrat P et al (eds) Flora Iberica, vol 1, Lycopodiaceae-Papaveraceae. Real Jardin Botanico, CSIC, Madrid, pp 181–188

    Google Scholar 

  • Doak DF, Morris WF (2010) Demographic compensation and tipping points in climate-induced range shifts. Nature 467:959–962

    Article  Google Scholar 

  • Elith J, Graham CH (2009) Do they? How do they? Why do they differ? On finding reasons for differing performances of species distribution models. Ecography 32:66–77

    Article  Google Scholar 

  • Esther A, Groeneveld J, Enright NJ et al (2010) Sensitivity of plant functional types to climate change: classification tree analysis of a simulation model. J Veg Sci 21:447–461

    Article  Google Scholar 

  • Felicisimo AM (2011) Impactos, vulnerabilidad y adaptación al cambio climático de la biodiversidad española. 2. Flora y vegetación. Oficina Española de Cambio Climático, Ministerio de Medio Ambiente y Medio Rural y Marino, Madrid

    Google Scholar 

  • Foody GM (2011) Impacts of imperfect reference data on the apparent accuracy of species presence/absence models and their predictions. Glob Ecol Biogeogr 20:498–508

    Article  Google Scholar 

  • Franklin J (2010) Mapping species distributions: spatial inference and prediction. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Freckelton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data. Am Nat 125:712–726

    Article  Google Scholar 

  • Galiano L, Martínez-Vilalta J, Lloret F (2010) Drought-Induced multifactor decline of Scots Pine in the Pyrenees and potential vegetation change by the Expansion of co-occurring oak species. Ecosystems 13:978–991

    Article  Google Scholar 

  • Gómez-Aparicio L, García-Valdés R, Ruíz-Benito P et al (2011) Disentangling the relative importance of climate, size and competition on tree growth in Iberian forests: implications for forest management under global change. Glob Chang Biol 17:2400–2414

    Article  Google Scholar 

  • Giorgi F, Bi X, Pal J (2004) Mean, interannual variability and trends in a regional climate change experiment over Europe. II: climate change scenarios (2071–2100). Clim Dynam 23:839–858

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change 2007. Cambridge University Press, Cambridge

    Google Scholar 

  • Jump A, Hunt JM, Peñuelas J (2008) Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob Chang Biol 12:2163–2174

    Article  Google Scholar 

  • Jump AS, Mátyás C, Peñuelas J (2009) The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol Evol 24:694–701

    Article  Google Scholar 

  • Keenan T, Serra JM, Lloret F et al (2011) Predicting the future of forests in the Mediterranean under climate change, with niche- and process-based models: CO2 matters! Glob Chang Biol 17:565–579

    Article  Google Scholar 

  • Keith DA, Akcakaya HR, Thuiller W et al (2008) Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models. Biol Lett 4:560–563

    Article  Google Scholar 

  • Lloret F, Escudero A, Iriondo JM et al (2012) Extreme climatic events and vegetation: the role of stabilizing processes. Glob Chang Biol 18:797–805

    Article  Google Scholar 

  • Martínez-Vilalta J, Mencuccini M, Vayreda J et al (2010) Interspecific variation in functional traits, not climatic differences among species ranges, determines demographic rates across 44 temperate and Mediterranean tree species. J Ecol 98:1462–1475

    Article  Google Scholar 

  • Martínez-Vilalta J, Lloret F, Breshears DD (2012) Drought-induced forest decline: causes, scope and implications. Biol Lett 12:689–691

    Article  Google Scholar 

  • Martins EP, Hansen TF (1997) Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am Nat 149:646–667

    Article  Google Scholar 

  • Meier ES, Kienast F, Pearman PB et al (2010) Biotic and abiotic variables show little redundancy in explaining tree species distribution. Ecography 33:1038–1048

    Article  Google Scholar 

  • Mellick R, Lowe A, Allen C et al (2012) Palaeodistribution modelling and genetic evidence highlight differential post-glacial range shifts of a rain forest conifer distributed across a latitudinal gradient. J Biogeogr 39:2292–2302

    Article  Google Scholar 

  • Morin X, Thuiller W (2009) Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology 90:1301–1313

    Article  Google Scholar 

  • Ninyerola M, Pons X, Roure JM (2005) Atlas Climático Digital de la Península Ibérica. Metodología y aplicaciones en bioclimatología y geobotánica. Universidad Autónoma de Barcelona, Bellaterra

    Google Scholar 

  • Prentice IC, Cramer W, Harrison SP et al (1992) A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134

    Article  Google Scholar 

  • Ramil-Rego P, Rodriguez-Gutian M, Muñoz-Sobrino C (1998) Sclerophyllous vegetation dynamics in the north of the Iberian peninsula during the last 16,000 years. Glob Ecol Biogeogr 7:335–351

    Article  Google Scholar 

  • Sabate S, Gracia CA, Sanchez A (2002) Likely effects of climate change on growth of Quercus ilex, Pinus halepensis, Pinus pinaster, Pinus sylvestris and Fagus sylvatica forests in the Mediterranean region. For Ecol Manag 162:23–37

    Article  Google Scholar 

  • Schwartz MW (2012) Using niche models with climate to inform conservation management decisions. Biol Conserv 155:149–156

    Article  Google Scholar 

  • Svenning J, Fitzpatrick MC, Normand S et al (2010) Geography, topography, and history affect realized-to-potential tree species richness patterns in Europe. Ecography 33:1070–1080

    Article  Google Scholar 

  • Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Glob Chang Biol 10:2020–2027

    Article  Google Scholar 

  • Thuiller W, Albert CH, Dubuis A et al (2010) Variation in habitat suitability does not always relate to variation in specie’s plant functional traits. Biol Lett 6:120–123

    Article  Google Scholar 

  • van Mantgem PJ, Stephenson NL, Byrne JC et al (2009) Widespread increase of tree mortality rates in the Western United States. Science 323:521–524

    Article  Google Scholar 

  • Vilà-Cabrera A, Martínez-Vilalta J, Vayreda J et al (2011) Structural and climatic determinants of demographic rates of Scots pine forests across the Iberian Peninsula. Ecol Appl 21:1162–1172

    Article  Google Scholar 

  • Webb CO, Donogue MJ (2005) Phylomatic: tree assembly for applied phylogenetics. Mol Ecol Notes 5:181–183

    Article  Google Scholar 

  • Westoby M, Wright IJ (2006) Land-plant ecology on the basis of functional traits. Trends Ecol Evol 21:261–268

    Article  Google Scholar 

  • Zimmerman NE, Yoccoz NG, Edwards TC (2009) Climatic extremes improve predictions of spatial patterns of tree species. Proc Natl Acad Sci 106:19723–19728

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Spanish Ministry of Education and Sciences (projects CGL2006-01293, CSD2008-00041, CGL2009-08101, CGL2010-16373, CGL2012-32965) and by the Government of Catalonia (AGAUR grants 2009-SGR-247 and 2009-SGR-1511). JMSD acknowledges support from the PIF-UAB PhD Grant program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Lloret.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 86 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lloret, F., Martinez-Vilalta, J., Serra-Diaz, J.M. et al. Relationship between projected changes in future climatic suitability and demographic and functional traits of forest tree species in Spain. Climatic Change 120, 449–462 (2013). https://doi.org/10.1007/s10584-013-0820-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-013-0820-6

Keywords

Navigation