Skip to main content

Advertisement

Log in

Studying geoengineering with natural and anthropogenic analogs

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Solar radiation management (SRM) has been proposed as a possible option for offsetting some anthropogenic radiative forcing, with the goal of reducing some of the associated climatic changes. There are clearly significant uncertainties associated with SRM, and even small-scale experiments that might reduce uncertainty would carry some risk. However, there are also natural and anthropogenic analogs to SRM, such as volcanic eruptions in the case of stratospheric aerosol injection and ship tracks in the case of marine cloud albedo modification. It is essential to understand what we can learn from these analogs in order to validate models, particularly because of the problematic nature of outdoor experiments. It is also important to understand what we cannot learn, as this might better focus attention on what risks would need to be solely examined by numerical models. Stratospheric conditions following a major volcanic eruption, for example, are not the same as those to be expected from intentional geoengineering, both because of confounding effects of volcanic ash and the differences between continuous and impulsive injection of material into the stratosphere. Nonetheless, better data would help validate models; we thus recommend an appropriate plan be developed to better monitor the next large volcanic eruption. Similarly, more could be learned about cloud albedo modification from careful study not only of ship tracks, but of ship and other aerosol emission sources in cloud regimes beyond the narrow conditions under which ship tracks form; this would benefit from improved satellite observing capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman AS, Kirkpatrick MP, Stevens DE, Toon OB (2004) The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature 432(7020):1014–1017

    Article  Google Scholar 

  • Anchukaitis KJ, Buckley BM, Cook ER, Cook BI, D’Arrigo RD, Ammann CM (2010) Influence of volcanic eruptions on the climate of the Asian monsoon region. Geophys Res Lett 37(L22703). doi:10.1029/2010GL044843

  • Bernard A, Rose WI Jr (1990) The injection of sulfuric acid aerosols in the stratosphere by El Chichón volcano and its related hazards to the international air traffic. Nat Hazard 3:59–67

    Article  Google Scholar 

  • Bluth GJS, Doiron SD, Krueger AJ, Walter LS, Schnetzler CC (1992) Global tracking of the SO2 clouds from the June 1991 Mount Pinatubo eruptions. Geophys Res Lett 19:151–154

    Article  Google Scholar 

  • Budyko MI (1977) Climatic changes. American Geophysical Society, Washington, D.C, 244 pp

    Book  Google Scholar 

  • Caldeira K, Keith DW (2010, Fall) The need for climate engineering research. Issues in Sci. and Tech. 57–62

  • Capaldo K, Corbett JJ, Kaslbhatla P, Fischbeck P, Pandls SN (1999) Effects of ship emissions on sulphur cycling and radiative climate forcing over the ocean. Nature 400:743–746

    Article  Google Scholar 

  • Chen Y-C et al (2012) Occurrence of lower cloud albedo in ship tracks. Atmos Chem Phys 12:8223–8235. doi:10.5194/acp-12-8223-2012

    Article  Google Scholar 

  • Christensen MW, Stephens GL (2011) Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: Evidence of cloud deepening. J Geophys Res 116(D03201). doi:10.1029/2010JD014638

  • Christensen MW, Stephens GL (2012) Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: 2. Impacts of haze on precipitating clouds. J Geophys Res 117(D11203). doi:10.1029/2011JD017125

  • Coakley JA Jr et al (2000) The appearance and disappearance of ship tracks on large spatial scales. J Atmos Sci 57:2765–2778

    Article  Google Scholar 

  • Crutzen P (2006) Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Clim Chang 77:211–219

    Article  Google Scholar 

  • Deshler T, Hervig ME, Hofmann DI, Rosen JM, Liley JB (2003) Thirty years of in situ stratospheric aerosol size distribution measurements from Laramie, Wyoming (41°N), using balloon-borne instruments. J Geophys Res 108(D5):4167. doi:10.1029/2002JD002514

    Article  Google Scholar 

  • Dong G, Gregory JM, Sutton RT (2009) Understanding land-sea warming contrast in response to increased greenhouse gases. Part I: Transient adjustment. J Clim 22:3079–3097

    Article  Google Scholar 

  • Durkee PA, Noone KJ, Bluth RT (2000) The Monterey area ship track experiment. J Atmos Sci 57:2523–2541

    Article  Google Scholar 

  • English JM, Toon OB, Mills MJ, Yu F (2011) Microphysical simulations of new particle formation in the upper troposphere and lower stratosphere. Atmos Chem Phys 11:9303–9322. doi:10.5194/acp-11-9303-2011

    Article  Google Scholar 

  • English JM, Toon OB, Mills MJ (2012) Microphysical simulations of sulfur burdens from stratospheric sulfur geoengineering. Atmos Chem Phys 12:4775–4793. doi:10.5194/acp-12-4775-2012

    Article  Google Scholar 

  • English JM, Toon OB, Mills MJ (2013) Microphysical simulations of large volcanic eruptions: Pinatubo and Toba. J Geophys Res in press. doi:10.1002/jgrd.50196

  • GAO (2011) Climate engineering: technical status, future directions, and potential responses. Report GAO-11-71. Government Accountability Office, Washington, DC, 135 pp

    Google Scholar 

  • Gao C, Oman L, Robock A, Stenchikov GL (2007) Atmospheric volcanic loading derived from bipolar ice cores accounting for the spatial distribution of volcanic deposition. J Geophys Res 112(D09109). doi:10.1029/2006JD007461

  • Gassó S (2008) Satellite observations of the impact of weak volcanic activity on marine clouds. J Geophys Res 113(D14S19). doi:10.1029/2007JD009106

  • Goren T, Rosenfeld D (2012) Satellite observations of ship emission induced transitions from broken to closed cell marine stratocumulus over large areas. J Geophys Res 117(D17206) doi:10.1029/2012JD017981

  • Heckendorn P, Weisenstein D, Fueglistaler S, Luo BP, Rozanov E, Schraner M, Thomason LW, Peter T (2009) The impact of geoengineering aerosols on stratospheric temperature and ozone. Environ Res Lett 4. doi:10.1088/1748-9326/4/4/045108

  • Hendricks J, Lippert E, Petry H, Ebel A (1999) Heterogeneous reactions on and in sulphate aerosols: implications for the chemistry of the midlatitude tropopause region. J Geophys Res 104:5531–5550

    Article  Google Scholar 

  • Hommel R, Graf HF (2010) Modelling the size distribution of geoengineered stratospheric aerosols. Atmos Sci Lett 12:168–175. doi:10.1002/asl.285

    Article  Google Scholar 

  • International Maritime Organization (1998) Regulations for the prevention of air pollution from ships and NOx technical code. ANNEX VI of MARPOL 73/78, London

  • Jones A, Haywood J, Boucher O (2009) Climate impacts of geoengineering marine stratocumulus clouds. J Geophys Res 114(D10106). doi:10.1029/2008JD011450

  • Kravitz B, Robock A (2011) The climate effects of high latitude volcanic eruptions: the role of the time of year. J Geophys Res 116(D01105). doi:10.1029/2010JD014448

  • Kravitz B, Robock A, Boucher O, Schmidt H, Taylor K, Stenchikov G, Schulz M (2011) The Geoengineering Model Intercomparison Project (GeoMIP). Atmos Sci Lett 12:162–167. doi:10.1002/asl.316

    Article  Google Scholar 

  • Kravitz B, MacMartin DG, Caldeira K (2012) Geoengineering: whiter skies? Geophys Res Lett 39(L11801). doi:10.1029/2012GL051652

  • Kuebbeler M, Lohmann U, Feichter J (2012) Effects of stratospheric sulfate aerosol geo-engineering on cirrus clouds. Geophys Res Lett 39:L23803. doi:10.1029/2012GL053797

    Article  Google Scholar 

  • Latham J (1990) Control of global warming? Nature 347:339–340

    Article  Google Scholar 

  • Lauer A, Eyring V, Hendricks J, Jockel P, Lohmann U (2007) Global model simulations of the impact of ocean-going ships on aerosols, clouds, and the radiation budget. Atmos Chem Phys 7:5061–5079. doi:10.5194/acp-7-5061-2007

    Article  Google Scholar 

  • Lohmann U, Feichter J (2005) Global indirect aerosol effects: a review. Atmos Chem Phys 5:715–737. doi:10.5194/acp-5-715-2005

    Article  Google Scholar 

  • Lohmann U, Karcher B, Timmreck C (2003) Impact of the Mount Pinatubo eruption on cirrus clouds formed by homogeneous freezing in the ECHAM4 GCM. J Geophys Res 108(D18):4568. doi:10.1029/2002JD003185

    Article  Google Scholar 

  • Lu ML, Conant WC, Jonsson HH, Varutbangkul V, Flagan RC, Seinfeld JH (2007) The Marine Stratus/Stratocumulus Experiment (MASE): aerosol-cloud relationships in marine stratocumulus. J Geophys Res 112(D10209): doi:10.1029/2006JD007985

  • Lu M-L, Sorooshian A, Jonsson HH, Feingold G, Flagan RC, Seinfeld JH (2009) Marine stratocumulus aerosol-cloud relationships in the MASE-II experiment: precipitation susceptibility in eastern Pacific marine stratocumulus. J Geophys Res 114(D24203). doi:10.1029/2009JD012774

  • Luo ZZ, Rossow WB, Inoue T, Stubenrauch CJ (2002) Did the eruption of the Mt. Pinatubo volcano affect cirrus properties? J Clim 15:2806–2820

    Article  Google Scholar 

  • MacMynowski DG, Keith DW, Caldeira K, Shin HJ (2011a) Can we test geoengineering? Royal Soc J Energy Environ Sci 4(12):5044–5052

    Article  Google Scholar 

  • MacMynowski DG, Shin HJ, Caldeira K (2011b) The frequency response of temperature and precipitation in a climate model. Geophys Res Lett 38(L16711) doi:10.1029/2011GL048623

  • Massie S, Randel W, Wu F, Baumgardner D, Hervig M (2003) Halogen Occultation Experiment and Stratospheric Aerosol and Gas Experiment II observations of tropopause cirrus and aerosol during the 1990s. J Geophys Res 108(D7):4222. doi:10.1029/2002JD002662

    Article  Google Scholar 

  • Mercado LM et al (2009) Impact of changes in diffuse radiation on the global land carbon sink. Nature 458:1014–1018. doi:10.1038/nature07949

    Article  Google Scholar 

  • Murphy DM (2009) Effect of stratospheric aerosols on direct sunlight and implications for concentrating solar power. Environ Sci Technol 48(8):2784–2786. doi:10.1021/es802206b

    Article  Google Scholar 

  • Oman L, Robock A, Stenchikov GL, Thordarson T (2006) High-latitude eruptions cast shadow over the African monsoon and the flow of the Nile. Geophys Res Lett 33(L18711). doi:10.1029/2006GL027665

  • Otterå OH, Bentsen M, Drange H, Suo LL (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci 3(10):688–694

    Article  Google Scholar 

  • Peters K, Quaas J, Grassl H (2011) A search for large-scale effects of ship emissions on clouds and radiation in satellite data. J Geophys Res 116(D24205). doi:10.1029/2011JD016531

  • Pierce JR, Weisenstein DK, Heckendorn P, Peter T, Keith DW (2010) Efficient formation of stratospheric aerosol for climate engineering by emission of condensible vapor from aircraft. Geophys Res Lett 37(L18805). doi:10.1029/2010GL043975

  • Ricke KL, Morgan MG, Allen MR (2010) Regional climate response to solar-radiation management. Nat Geosci 3:537–541

    Article  Google Scholar 

  • Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219

    Article  Google Scholar 

  • Robock A (2008) 20 reasons why geoengineering may be a bad idea. Bull Atomic Sci 64:14–18

    Article  Google Scholar 

  • Robock A (2012) Will geoengineering with solar radiation management ever be used? Ethics Policy Environ 15:202–205

    Article  Google Scholar 

  • Robock A, Liu Y (1994) The volcanic signal in Goddard Institute for Space Studies three-dimensional model simulations. J Clim 7:44–55

    Article  Google Scholar 

  • Robock A, Oman L, Stenchikov G (2008) Regional climate responses to geoengineering with tropical and Arctic SO2 injections. J Geophys Res 113(D16101). doi:10.1029/2008JD010050

  • Robock A, Bunzl M, Kravitz B, Stenchikov G (2010) A test for geoengineering? Science 327:530–531. doi:10.1126/science.1186237

    Article  Google Scholar 

  • Russell LM et al (2013) Eastern Pacific emitted aerosol cloud experiment (E-PEACE). Bull Am Meteorol Soc, in press. doi:10.1175/BAMS-D-12-00015

  • Sassen K et al (1995) The 5–6 December 1991 FIRE IFO-II Jet-stream Cirrus case-study: possible influences of volcanic aerosols. J Atmos Sci 52:97–123

    Article  Google Scholar 

  • Sassen K, Wang Z, Liu D (2008) Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements. J Geophys Res 113(D00A12). doi:10.1029/2008JD009972

  • Schreier M, Mannstein H, Erying V, Bovensmann H (2007) Global ship track distribution and radiative forcing from 1 year of AATSR data. Geophys Res Lett 34(L17814). doi:10.1029/2007GL030664

  • Shepherd J et al (2009) Geoengineering the climate: science, governance and uncertainty, Royal Society Policy document 10/09. Royal Society, London, 82 pp

    Google Scholar 

  • Soden BJ, Wetherald RT, Stenchikov GL, Robock A (2002) Global cooling following the eruption of Mt. Pinatubo: a test of climate feedback by water vapor. Science 296:727–730

    Article  Google Scholar 

  • Solomon S (1999) Stratospheric ozone depletion: a review of concepts and history. Rev Geophys 37:275–316

    Article  Google Scholar 

  • Song NH, Starr DO, Wuebbles DJ, Williams A, Larson SM (1996) Volanic aerosols and interannual variation of high clouds. Geophys Res Lett 23:2657–2660

    Article  Google Scholar 

  • SRMGI (Solar Radiation Management Governance Initiative) (2011) Solar radiation management: the governance of research. Royal Society, London, 69 pp., http://www.srmgi.org/report/

    Google Scholar 

  • Stenchikov GL, Kirchner I, Robock A, Graf HF, Antuña JC, Grainger RG, Lambert A, Thomason L (1998) Radiative forcing from the 1991 Mount Pinatubo volcanic eruption. J Geophys Res 103:13,837–13,857

    Article  Google Scholar 

  • Stenchikov G, Delworth TL, Ramaswamy V, Stouffer RJ, Wittenberg A, Zeng FR (2009) Volcanic signals in oceans. J Geophys Res 114(D16104). doi:10.1029/2008JD011673

  • Stevens B, Feingold G (2009) Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 461:607-613. doi:10.1038/nature08281

    Google Scholar 

  • Stevens B et al (2003) Dynamics and chemistry of marine stratocumulus - DYCOM-III. Bull Am Meteorol Soc 84:579–593

    Article  Google Scholar 

  • Strong AE (1984) Monitoring El Chichón aerosol distribution using NOAA-7 satellite AVHRR sea surface temperature observations. Geofis Int 23:129–141

    Google Scholar 

  • Tilmes S, Müller R, Salawitch R (2008) The sensitivity of polar ozone depletion to proposed geoengineering schemes. Science 320:1201–1205. doi:10.1126/science.1153966

    Article  Google Scholar 

  • Timmreck C et al (2010) Aerosol size confines climate response to volcanic supereruptions. Geophys Res Lett 37(L24705). doi:10.1029/2010GL045464

  • Trenberth KE, Dai A (2007) Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophys Res Lett 34(L15702). doi:10.1029/2007GL030524

  • Twomey S (1974) Pollution and the planetary albedo. Atmos Environ 8:1251–1256

    Article  Google Scholar 

  • Vernier JP, Jumelet J (2011) Advances in forecasting volcanic plume evolution. SPIE Newsroom. doi:10.1117/2.1201103.003530

    Google Scholar 

  • Vernier JP et al (2009) Tropical stratospheric aerosol layer from CALIPSO lidar observations. J Geophys Res Lett 114(D00H10). doi:10.1029/2009JD011946

  • Wang H, Rasch PJ, Feingold G (2011) Manipulating marine stratocumulus cloud amount and albedo: a process-modelling study of aerosol-cloud-precipitation interactions in response to injection of cloud condensation nuclei. Atmos Chem Phys 11:4237–4249. doi:10.5194/acp-11-4237-2011

    Article  Google Scholar 

  • Wood R et al (2011) The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): goals, platforms, and field operations. Atmos Chem Phys 11:627–654. doi:10.5194/acp-11-627-2011

    Article  Google Scholar 

  • Wylie DP, Menzel WP, Woolf HM, Strabala KI (1994) Four years of global cirrus cloud statistics using HIRS. J Clim 7:1972–1986

    Article  Google Scholar 

  • Yuan T, Remer LA, Yu H (2011) Microphysical, macrophysical and radiative signatures of volcanic aerosols in trade wind cumulus observed by the A-Train. Atmos Chem Phys 11:7119–7132. doi:10.5194/acp-11-7119-2011

    Article  Google Scholar 

  • Zanchettin D, Rubino A, Jungclaus JH (2010) Intermittent multidecadal-to-centennial fluctuations dominate global temperture evolution over the last millennium. Geophys Res Lett 37(L14702). doi:10.1029/2010GL043717

  • Zerefos CS, Gerogiannis VT, Balis D, Zerefos SC, Kazantzidis A (2007) Atmospheric effects of volcanic eruptions as seen by famous artists and depicted in their paintings. Atmos Chem Phys 7:4027–4042

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Keck Institute for Space Studies for funding two workshops at the California Institute of Technology where we discussed topics in this paper, and all of the participants of these workshops who contributed (http://www.kiss.caltech.edu/study/geoengineering). A. Robock is supported by NSF grant AGS-1157525. The work by R. Duren was done at the Jet Propulsion Laboratory, a division of the California Institute of Technology under contract to the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Robock.

Additional information

This article is part of a special issue on “Geoengineering Research and its Limitations” edited by Robert Wood, Stephen Gardiner, and Lauren Hartzell-Nichols.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robock, A., MacMartin, D.G., Duren, R. et al. Studying geoengineering with natural and anthropogenic analogs. Climatic Change 121, 445–458 (2013). https://doi.org/10.1007/s10584-013-0777-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-013-0777-5

Keywords

Navigation