Skip to main content

Advertisement

Log in

Dry season precipitation over the Mesoamerican Biological Corridor is more sensitive to deforestation than to greenhouse gas driven climate change

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

To prevent the loss of biodiversity in northern Central America, which is one of 34 global biodiversity hotspots, the Mesoamerican Biological Corridor, a network of protected parks and reserves has been proposed. While on-going deforestation to croplands and pastures outside the protected regions is likely to effect the dry season precipitation over the regenerated and extant forests in the proposed protected regions, global climate change driven precipitation changes may also be a significant factor, at least at some locations. This study compares the effects of land cover change to the effects of elevated greenhouse gas concentrations on precipitation in the proposed areas of the Mesoamerican Biological Corridor network. Using 5 consecutive dry season simulations of the effects of land cover change that included dry, wet and normal years, and using statistically downscaled global climate model (GCM) precipitation from the fourth assessment report (AR4), a larger expanse of the proposed protected regions was found more sensitive to precipitation decreases due to land cover changes. Two specific protected regions however stand out: the Maya Highlands and some areas of the Maya lowlands that were more sensitive to global climate change driven precipitation decreases. In these protected regions it is likely that irrespective of local policies the climate change signal would dominate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baidya RS, Avissar R (2002) Impact of land use/land cover change on regional hydrometeorology in Amazonia. J Geophys Res. doi:10.1029/2000JD000266

    Google Scholar 

  • Cotton WR, Pielke RA (2007) Human impacts on weather and climate. University Press, Cambridge, 330 pp

    Book  Google Scholar 

  • Douglas EM, Beltrán-Przekurat A, Niyogi DS, Pielke RA Sr, Vörösmarty CJ (2009) The impact of agricultural intensification and irrigation on land-atmosphere interactions and Indian monsoon precipitation—a mesoscale modeling perspective. Glob Planet Chang. doi:10.1016/j.gloplacha.2008.12.007

    Google Scholar 

  • Foley JA et al (2011) Solutions for a cultivated planet. Nature 478:337–342

    Article  Google Scholar 

  • Garcia-Carreras L, Parker DJ, Taylor CM, Reeves CE, Murphy JG (2010) Impact of mesoscale vegetation heterogeneities on the dynamical and thermodynamic properties of the planetary boundary layer. J Geophys Res 115:D03102. doi:10.1029/2009JD012811

    Article  Google Scholar 

  • Gleckler PJ, Taylor KE, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res 113:D06104. doi:10.1029/2007JD008972

    Article  Google Scholar 

  • Harvey CA, Komar O, Chazdon R, Ferguson BG, Finegan B, Griffith DM, Martinez-Ramos M, Morales H, Nigh R, Soto-Pinto L, Van Breugel M, Wishnie M (2008) Integrating agricultural landscapes with biodiversity conservation in the mesoamerican hotspot. Conserv Biol 22:8–15. doi:10.1111/j.1523-1739.2007.00863.x

    Article  Google Scholar 

  • Hansen MC, DeFries RS, Townshend JRG, Sohlberg R (2000) Global land cover classification at the 1 km spatial resolution using a classification tree approach. Int J Remote Sens 21:1331–1364

    Article  Google Scholar 

  • Henderson-Sellers A, Gornitz V (1984) Possible climatic impacts of land cover transformations, with particular emphasis on tropical deforestation. Climate Change 6:231–258

    Article  Google Scholar 

  • Manoharan VS, Welch RM, Lawton RO (2009) Impact of deforestation on regional surface temperatures and moisture in the Maya lowlands of Guatemala. Geophys Res Lett 36:L21701. doi:10.1029/2009GL040818

    Article  Google Scholar 

  • Maurer EP, Adam JC, Wood AW (2009) Climate model based consensus on the hydrologic impacts of climate change to the Rio Lempa basin of Central America. Hydrol Eart Syst Sci 13:183–194

    Article  Google Scholar 

  • Meehl GA, Covey C, Taylor KE, Delworth T, Stouffer RJ, Latif M, McAvaney B, Mitchell JFB (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Amer Meteor Soc 88:1383–1394. doi:10.1175/BAMS-88-9-1383

    Article  Google Scholar 

  • Miller K, Chang E, Johnson N (2001) Defining common ground for the Mesoamerican Biological Corridor. World Resources Institute, available at: http://www.wri.org/publication/defining-common-ground-mesoamerican-biological-corridor

  • Mittermeier RA, Robles-Gil P, Hoffmann M, Pilgrim JD, Brooks TM, Mittermeier CG, Lamoreux JL, Fonseca G (2004) Hotspots revisited: Earth’s biologically richest and most endangered terrestrial ecoregions. CEMEX, Mexico City, 390 pages

    Google Scholar 

  • Nair US, Ray DK, Wang J, Christopher SA, Lyons TJ, Welch RM, Pielke RA Sr (2007) Observational estimates of radiative forcing due to land use change in southwest Australia. J Geophys Res 112:D09117. doi:10.1029/2006JD007505

    Article  Google Scholar 

  • Niyogi D, Raman S, Alapaty K (1999) Uncertainty in specification of surface characteristics, Part 2: hierarchy of interaction explicit statistical analysis. Boundary- Layer Meteorol 91:341–366

    Article  Google Scholar 

  • Oglesby RJ, Sever TL, Saturno W, Erickson DJ III, Srikishen J (2010) Collapse of the Maya: could deforestation have contributed? J Geophys Res 115:D12106. doi:10.1029/2009JD011942

    Article  Google Scholar 

  • Oliver JE (2005) Encyclopedia of world climatology. In: Encyclopedia of Earth Sciences Series, doi: 10.1007/1-4020-3266-8, 183–186.

  • Pielke RA Sr (2001) Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev Geophys 39:151–177

    Article  Google Scholar 

  • Pielke RA, Cotton WR, Walko RL, Tremback CJ, Lyons WA, Grasso LD, Nicholls ME, Moran MD, Wesley DA, Lee TJ, Copeland JH (1992) A comprehensive meteorological modeling system – RAMS. Meteor Atmos Phys 49:69–91

    Article  Google Scholar 

  • Pielke RA Sr, Adegoke J, Beltran-Przekurat A, Hiemstra CA, Lin J, Nair US, Niyogi D, Nobis TE (2007) An overview of regional land use and land cover impacts on rainfall. Tellus B 59:587–601

    Article  Google Scholar 

  • Ray DK, Nair US, Welch RM, Han Q, Zeng J, Su W, Kikuchi T, Lyons TJ (2003) Effects of land use in Southwest Australia: 1. Observations of cumulus cloudiness and energy fluxes. J Geophys Res 108(D14):4414

    Article  Google Scholar 

  • Ray DK, Welch RM, Lawton RO, Nair US (2006) Dry season clouds and rainfall in Northern Central America: implications for the Mesoamerican Biological Corridor. Glob Planet Chang 54:150–162. doi:10.1016/j.gloplacha.2005.09.004

    Article  Google Scholar 

  • Ray DK, Pielke RA Sr, Nair US, Welch RM, Lawton RO (2009) Importance of land use versus atmospheric information verified from cloud simulations from a frontier region in Costa Rica. J Geophys Res. doi:10.1029/2007JD009565

    Google Scholar 

  • Ray DK, Pielke RA Sr, Nair US, Niyogi D (2010) Roles of atmospheric and land surface data in dynamic regional downscaling. J Geophys Res 115:D05102. doi:10.1029/2009JD012218

    Article  Google Scholar 

  • Ray DK, Pijanowski BC (2010) A backcast land use change model to generate past land use maps for the Muskegon River Watershed of Michigan. USA J Land Use Sci 5:1–29. doi:10.1080/ 17474230903150799

    Article  Google Scholar 

  • Ray DK, Manoharan VS, Welch RM (2011) Cloud cover conditions and stability of the Western Ghats montane wet forests. J Geophys Res 116:D12104. doi:10.1029/2010JD015245

    Article  Google Scholar 

  • Ray DK et al (2012) Recent patterns of crop yield growth and stagnation. Nat Commun 3:1293. doi:10.1038/ncomms2296

    Article  Google Scholar 

  • Weaver CP (2004) Coupling between large-scale atmospheric processes and mesoscale land–atmosphere interactions in the U.S. Southern Great Plains during Summer. Part I: case studies. J Hydrometeor 5:1223–1246. doi:10.1175/JHM-396.1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak K. Ray.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ray, D.K. Dry season precipitation over the Mesoamerican Biological Corridor is more sensitive to deforestation than to greenhouse gas driven climate change. Climatic Change 119, 775–783 (2013). https://doi.org/10.1007/s10584-013-0753-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-013-0753-0

Keywords

Navigation