Alvarez RA, Pacala SW, Winebrake JJ, Chameides WL, Hamburg SP (2012) Greater focus needed on methane leakage from natural gas infrastructure. PNAS. doi:10.1073/pnas.1202407109
Brenkert AJ, Kim SH, Smith AJ, Pitcher HM (2003) Model Documentation for the MiniCAM. PNNL Pub. 14337
Brown SPA, Krupnick A, Walls MA (2009) Natural gas: a bridge to a low-carbon future? RFF Issue Brief 09–11. Resources for the Future, Washington, DC
Google Scholar
Cathles LM (2012) Assessing the greenhouse impact of natural gas. Geochem Geophys Geosyst 13:Q06013
Article
Google Scholar
Cathles LM III, Brown L, Taam M, Hunter A (2011) A commentary on “The greenhouse-gas footprint of natural gas in shale formations” by R.W. Howarth, R. Santoro, and Anthony Ingraffea. Clim Chang. doi:10.1007/s10584-011-0333-0
Clarke L, Edmonds J, Jacoby H, Pitcher H, Reilly J, Richels R (2007) Scenarios of greenhouse gas emissions and atmospheric concentrations. U.S. Climate Change Science Program, Washington, DC
Google Scholar
Clarke L, Edmonds J, Krey V, Richels R, Rose S, Tavoni M (2009) International climate policy architectures: Overview of the EMF 22 International Scenarios. Energy Economics 31(2):S64–S81
Article
Google Scholar
Editorial (2012) Gas and air. Nature 428: 131–132 (2012)
Howarth RW, Santoro R, Ingraffea A (2012) Venting and leaking of methane from shale gas development: response to Cathles et al. Clim Chang. doi:10.1007/s10584-012-0401-0
Howarth RW, Santoro R, Ingraffea A (2011) Methane and the greenhouse-gas footprint of natural gas from shale formations. Clim Chang. doi:10.1007/s10584-011-0061-5
International Energy Agency (2011) Special Report: Are We Entering a Golden Age of Gas?
International Energy Agency (2011) World Energy Outlook 2011
Jiang M, Griffin WM, Hendrickson C, Jaramillo P, VanBriesen J, Venkatesh A (2011) Life cycle greenhouse gas emissions of Marcellus shale gas. Environ Res Lett 6
Kerr RA (2010) Natural gas from shale bursts onto the scene. Science 328:1624–1626
Article
Google Scholar
Manne A, Mendelsohn R, Richels R (1995) MERGE: A model for evaluating regional and global effects of GHG reduction policies. Energy Policy 23:17–34
Article
Google Scholar
Massachusetts Institute of Technology (2011) The future of natural gas: An interdisciplinary MIT study. Cambridge, MA
Myhrvold NP, Caldeira K (2012) Greenhouse gases, climate change and the transition from coal to low-carbon electricity. Environ Res Lett 7
O’Neill BC, Oppenheimer M (2004) Climate change impacts are sensitive to the concentration stabilization path. Proc Natl Acad Sci USA 101:16411–16416
Article
Google Scholar
Podesta JD, Wirth TE (2009) Natural gas: a bridge fuel for the 21st century. Center for American Progress
Prinn R, Paltsev S, Sokolov A, Sarofim M, Reilly J, Jacoby H (2008) The influence on climate change of differing scenarios for future development analyzed using the MIT integrated global system model. MIT Joint Program Report Series 163
Prinn R, Jacoby H, Sokolov A, Wang C, Xiao X, Yang Z, Eckhaus R, Stone P, Ellerman D, Melillo J et al (1999) Integrated global system model for climate policy assessment: Feedbacks and sensitivity studies. Clim Chang 41:469–546
Article
Google Scholar
Skone TJ, Littlefield J, Marriott J (2011) Life cycle greenhouse gas inventory of natural gas extraction, Delivery and Electricity Production. DOE/NETL-2011/1522
Wigley TML (2011) Coal to gas: The influence of methane leakage. Clim Chang. doi:10.1007/s10584-011-0217-3
Wigley TML (1991) Could reducing fossil-fuel emissions cause global warming? Nature 349:503–506
Article
Google Scholar
Wigley TML (2008) MAGICC/SCENGEN 5.3: User Manual ver. 2.
Wigley TML, Richels R, Edmonds JA (1996) Economic and environmental choices in the stabilization of atmospheric CO2 concentrations. Nature 379:240–243
Article
Google Scholar