Skip to main content

Hydro-climatic effects of future land-cover/land-use change in montane mainland southeast Asia

Abstract

Regional climate model simulations with RegCM3 were performed to investigate how future land-cover/land-use (LCLU) change in Montane Mainland Southeast Asia (MMSEA) could affect regional climate. Simulation land-surface parameterizations included present day and plausible 2050 land-covers, as well as two extreme deforestation simulations. In the simulations, the original land cover map of RegCM3, based on AVHRR 1992–93 observations, was replaced with one obtained from MODIS 2001 observations; and the model was set to work at two different spatial resolutions using the sub-grid feature of the land surface model: 27.79 km for the atmosphere and 9.26 km for the land surface. During validation, modeled precipitation closely matched observed precipitation over southern China, but underestimated precipitation in the Indochina Peninsula. The plausible 2050 LCLU simulation predicted little change in regional climate. However, an extreme irrigated crop parameterization caused precipitation to increase slightly in the Indochina Peninsula, decrease substantially in southeastern China, and increase significantly in the South China Sea. The extreme short-grass parameterization caused substantial precipitation decreases in MMSEA, but few changes elsewhere. These simulations indicate in order for significant climatological changes to occur, substantially more LCLU conversion is required than the 16 % change we incorporated into the plausible 2050 land-cover scenario.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Castro CL, Pielke RA Sr, Leoncini G (2005) Dynamical downscaling: assessment of value retained and added using the Regional Atmospheric Modeling System (RAMS). J Geophys Res 110:D05108. doi:10.1029/2004JDD004721

    Article  Google Scholar 

  • Chen W, Jiang Z, Li L, Yiou P (2011) Simulation of regional climate change under the IPCC A2 scenario in southeast China. Clim Dyn 36:491–507

    Article  Google Scholar 

  • Chotamonsak C, Salathe EP Jr, Kreasuwan J, Chantara S, Siriwitayakorn K (2011) Projected climate change over Southeast Asia simulated using a WRF regional climate model. Atmos Sci Let 12:213–219

    Article  Google Scholar 

  • Chow KC, Chan JCL, Pal JS, Giorgi F (2006) Convection suppression criteria applied to the MIT cumulus parameterization scheme for simulating the Asian summer monsoon. Geophys Res Lett 33:L24709. doi:10.1029/2006GL028026

    Article  Google Scholar 

  • Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere-atmosphere transfer scheme (bats) version 1e as coupled to the NCAR community climate model. Tech. rep., National Center for Atmospheric Research, Colorado

    Google Scholar 

  • FAO (2010) The global forest resource assessment. FAO, Rome

    Google Scholar 

  • Foley JA, Levis S, Prentice IC, Pollard D, Thompson SL (1998) Coupling dynamic models of climate and vegetation. Glob Change Biol 4:561–579

    Article  Google Scholar 

  • Fox JM, Vogler JB, Sen OL, Ziegler AD, Giambelluca TW (2012) Simulating land-cover change in Montane Mainland Southeast Asia. Environ Manage 49(5):968–979

    Article  Google Scholar 

  • Gao XJ, Shi Y, Zhang DF, Wu J, Giorgi F, Ji ZM, Wang YG (2012) Uncertainties of monsoon precipitation projection over China: results from two high resolution RCM simulations. Clim Res 52:213–226. doi:10.3354/cr01084

    Article  Google Scholar 

  • Giambelluca TW, Tran LT, Ziegler AD, Menard TP, Nullet MA (1996) Soil-vegetation-atmosphere processes: simulation and field measurement for deforested sites in northern Thailand. J Geophys Res Atmos 101:25,867–25,885

    Article  Google Scholar 

  • Giambelluca TW, Ziegler AD, Nullet MA, Dao TM, Tran LT (2003) Transpiration in a small tropical forest patch. Ag Forest Meteorol 117:1–22

    Article  Google Scholar 

  • Giorgi F, Francisco R, Pal JS (2003) Effects of a subgrid-scale topography and land use scheme on the simulation of surface climate and hydrology. Part 1: effects of temperature and water vapor disaggregation. J Hydromet 4:317–333

    Article  Google Scholar 

  • Grell G (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Wea Rev 121:764–787

    Article  Google Scholar 

  • Guardiola-Claramonte M, Troch PA, Ziegler AD, Giambelluca TW, Durcik M, Vogler JB, Nullet MA (2010) Modeling basin-scale hydrologic effects of rubber (Hevea brasiliensis) in a tropical catchment. Ecohydrology 3(3):306–314

    Article  Google Scholar 

  • Holtslag AAM, de Bruijn EIF, Pan H-L (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Wea Rev 118:1561–1575

    Article  Google Scholar 

  • Hsie EY, Anthes RA, Keyser D (1984) Numerical simulation of frontogenesis in a moist atmosphere. J Atmos Sci 41:2581–2594

    Article  Google Scholar 

  • Kanae S, Oki T, Musiake K (2001) Impact of deforestation on regional precipitation over the Indochina Peninsula. J Hydrometeor 2:51–70

    Article  Google Scholar 

  • Karl TR, Trenberth KE (2003) Modern global climate change. Science 302:1719–1723

    Article  Google Scholar 

  • Kiehl JT, Hack JJ, Bonan GB, Boville BA, Breigleb BP, Williamson D, Rasch P (1996) Description of the NCAR community climate model (CCM3). Tech. Rep. NCAR/TN-420 + STR. National Center for Atmospheric Research

  • Nobre CA, Sellers PJ, Shukla J (1991) Amazonian deforestation and regional climate change. J Climate 4:957–988

    Article  Google Scholar 

  • Pal J, Small E, Eltahir E (2000) Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within regcm. J Geophys Res-Atmos 105(D24):29579–29594

    Article  Google Scholar 

  • Pal JS, Giorgi F, Bi XQ, Elguindi N et al (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88:1395–1409

    Article  Google Scholar 

  • Pielke RA Sr, Adegoke J, Beltran-Przekurat A, Hiemstra CA, Lin J, Nair US, Niyogi D, Nobis TE (2007) An overview of regional land-use and land-cover impacts on rainfall. Tellus 59B:587–590

    Google Scholar 

  • Schneck R, Mosbrugger V (2011) Simulated climate effects of Southeast Asian deforestation: regional processes and teleconnection mechanisms. J Geophys Res 116:D11116. doi:10.1029/2010JD015450

    Article  Google Scholar 

  • Segal M, Pan Z, Turner RW, Takle ES (1998) On the potential impact of irrigated areas in North America summer rainfall caused by large-scale systems. J Appl Meteor 37:325–331

    Article  Google Scholar 

  • Sen OL, Wang Y, Wang B (2004) Impact of Indochina deforestation on the East-Asian summer monsoon. J Clim 17:1366–1380

    Article  Google Scholar 

  • Sen OL, Bozkurt D, Fox JM, Vogler JB, Giambelluca TW, Ziegler AD (2012) Projected impacts of global warming on regional climate in southeast Asia. Clim Dyn (forthcoming)

  • Silva MES, Franchito SH, Rao VB (2006) Effects of Amazonian deforestation on climate: a numerical experiment with a coupled biosphere-atmosphere model with soil hydrology. Theoret Appl Clim 85:1–18

    Article  Google Scholar 

  • Wang Y, Sen OL, Wang B (2003) A highly resolved regional climate model (IPRC_RegCM) and its simulation of the 1998 severe precipitation event over China. Part I: model description and control experiment. J Climate 16:1721–1738

    Article  Google Scholar 

  • Wang Y, Leung LR, McGregor JL, Lee DK, Wang WC, Ding Y, Kimura F (2004) Regional climate modeling: progress, challenges, and prospects. J Meteorol Soc Jpn 82(6):1599–1628

    Article  Google Scholar 

  • Werth D, Avissar R (2005) The local and global effects of Southeast Asian deforestation. Geophys Res Lett 32:L20702. doi:10.1029/2005GL022970

    Article  Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Amer Meteor Soc 78:2539–2558

    Article  Google Scholar 

  • Yatagai A, Kamiguchi K, Arakawa O, Hamada A, Yasutomi N, Kitoh A (2012) APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull Am Meteorol Soc. doi:10.1175/BAMS-D-11-00122.1

  • Zeng X, Zhao M, Dickinson RE (1998) Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J Climate 11:2628–2644

    Article  Google Scholar 

  • Zhang DF, Gao XJ, Ouyang LC (2008) Simulation of present climate over China by a regional climate model. J Trop Meteorol 14(1):19–23

    Google Scholar 

  • Ziegler AD, Fox JM, Xu JC (2009a) The rubber juggernaut. Science 324:1024–1025

    Article  Google Scholar 

  • Ziegler AD, Bruun TB, Guardiola-Claramonte M, Giambelluca TW, Lawrence D, Lam NT (2009b) Environmental consequences of the demise in Swidden agriculture in SE Asia: geomorphological processes. Human Ecol 37:361–373

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NASA (#NNG04GH59G) and APN (ARCP2007-01CMY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omer L. Sen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 156 kb)

ESM 2

(PDF 106 kb)

ESM 3

(PDF 374 kb)

ESM 4

(PDF 1120 kb)

ESM 5

(PDF 1083 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sen, O.L., Bozkurt, D., Vogler, J.B. et al. Hydro-climatic effects of future land-cover/land-use change in montane mainland southeast Asia. Climatic Change 118, 213–226 (2013). https://doi.org/10.1007/s10584-012-0632-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-012-0632-0

Keywords

  • Land Cover
  • Latent Heat Flux
  • Specific Humidity
  • Irrigate Crop
  • Indochina Peninsula