Optimal growth with adaptation to climate change


We find that approximately a quarter of the world’s productive capital could be sensitive to climate; therefore, this capital faces the risk of accelerated obsolescence in a world warming by an average of 0.2 °C per decade. We examine the question of optimal adaptation to climate change in a vintage capital growth model without uncertainty. Along the optimal pathway, adaptation is proactive with an anticipation period of approximately twenty years. While there is additional investment in this scenario compared with a no-climate-change baseline, the overall cost to adapt is low relative to the potential losses from maladaptation. Over-investment in protection capital allows the economy to be consistently well-adapted to climate; thus, such a policy prevents transient maladaptation costs. Sensitivity analysis with an integrated assessment model suggests that costs could be ten times larger if adaptation only begins after vulnerable sectors are impacted.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Agrawala S, Fankhauser S (eds) (2008) Empirical estimates of adaptation costs and benefits: a critical assessment, chapter 2. OECD. ISBN 9789264046030. http://www.oecd.org/env/cc/ecoadaptation

  2. Ambrosi P, Hourcade J-C, Hallegatte S, Lecocq F, Dumas P, Ha-Duong M (2003) Optimal control models and elicitation of attitudes towards climate change. Environ Model Assess 8(3):135–147. doi:10.1023/A:1025586922143. Reprinted in: Filar JA, Haurie A (eds) Uncertainty and environmental decision making. Handbooks on OR/MS

    Article  Google Scholar 

  3. Benhabib J, Rustichini A (1991) Vintage capital, investment, and growth. J Econ Theory 55(2):323–339

    Article  Google Scholar 

  4. de Bruin K, Dellink R, Tol R (2009) AD-DICE: an implementation of adaptation in the DICE model. Climatic Change 95:63–81. ISSN 0165-0009. doi:10.1007/s10584-008-9535-5

    Article  Google Scholar 

  5. Fankhauser S, Smith JB, Tol RSJ (1999) Weathering climate change: some simple rules to guide adaptation decisions. Ecol Econ 30:67–78

    Article  Google Scholar 

  6. GTAP: Global Trade Analysis Project (1997) https://www.gtap.agecon.purdue.edu/default.asp Accessed 24 October 2012

  7. Hallegatte S (2005) The long time scales of the climate-economy feedback and the climatic cost of growth. Environ Model Assess 10(4):277–289

    Article  Google Scholar 

  8. Hallegatte, S (2009) Strategies to adapt to an uncertain climate change. Global Environ Change 19:240–247. doi:10.1016/j.gloenvcha.2008.12.003

    Article  Google Scholar 

  9. Intergovernmental Panel on Climate Change (2000) Special report on emissions scenarios. Cambridge University Press. ISBN 978-0521804936. http://www.ipcc.ch/ipccreports/sres/emission/index.htm

  10. IPCC (2007) Climate change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change. http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_synthesis_report.htm

  11. Kelly DL, Kolstad CD, Mitchell GT (2005) Adjustment costs from environmental change. J Environ Econ Manag 50:468–495. doi:10.1016/j.jeem.2005.02.003

    Article  Google Scholar 

  12. Kopf S, Ha-Duong M, Hallegatte S (2008) Using maps of city analogues to display and interpret climate change scenarios and their uncertainty. Nat Hazards Earth Syst Sci 8(4):905–918. http://www.nat-hazards-earth-syst-sci.net/8/905/2008/nhess-8-905-2008.html. NHESS is an open access journal of the European Geosciences Union

  13. Margulis S, Bucher A, Corderi D, Narain U, Page H, Pandey K, Phu TTL, Ahmed N, Bachofen C, Kuriakose A, Mearns R, Perrin N, Blankespoor B, Dasgupta S, Murray S, Cushion E, Gronnevet L, Cretegny L, Ghosh P, Hughes G, Laplante B, Leony L, Nelson G, Nicholls R, Schneider R, Strzepek K, Wheeler D (2009) The economics of adaptation to climate change. Final methology report. Technical report, The World Bank. http://climatechange.worldbank.org/climatechange/content/economics-adaptation-climate-change-study-homepage

  14. Margulis S, Hughes G, Schneider R, Pandey K, Narain U (2010) The economics of adaptation to climate change. Synthesis report. Technical report, The World Bank. http://climatechange.worldbank.org/climatechange/content/economics-adaptation-climate-change-study-homepage

  15. Markandya A, Watkiss P (2010) Potential costs and benefits of adaptation options: a review of existing literature. Technical Report FCCC/TP/2009/2/Rev.1, UNFCCC. http://adaptationonline.blogspot.com/2010/01/unfccc-review-of-adaptation-costs-and.html

  16. Nordhaus WD (1994) Managing the global commons: the economics of climate change. MIT Press. ISBN 978-0262-14055-3

  17. Nordhaus WD, Boyer J (2000) Warming the world: economics models of global warming. MIT Press. ISBN 978-0262640541. http://www.econ.yale.edu/ nordhaus/homepage/dice_section_I.html

  18. O’Neill BC, Crutzen P, Grübler A, Ha-Duong M, Keller K, Kolstad C, Koomey J, Lange A, Obersteiner M, Oppenheimer M, Pepper W, Sanderson W, Schlesinger M, Treich N, Ulph A, Webster MD, Wilson C (2006) Learning and climate change. Climatic Change 6(5):585–589

    Google Scholar 

  19. Parry M, Arnell N, Berry P, Dodman D, Fankhauser S, Hope C, Kovats S, Nicholls R, Satterthwaite D, Tiffin R, Wheeler T (2009) Assessing the costs of adaptation to climate change: a review of the UNFCCC and other recent estimates. International Institute for Environment and Development and Grantham Institute for Climate Change, London. ISBN 978-1-84369-745-9. http://www.iied.org/pubs/pdfs/11501IIED.pdf

  20. Reilly J, Schimmelpfennig D (2000) Irreversibility, uncertainty and learning: portraits of adaptation to long-term climate change. Climatic Change 45:253–278. doi:10.1023/A:1005669807945

    Article  Google Scholar 

  21. Salagnac J-L (2007) Lessons from the 2003 heat wave: a French perspective. Build Res Inf 35(4):450–457

    Article  Google Scholar 

  22. Schneider SH, Easterling WE, Mearns LO (2000) Adaptation: sensitivity to natural variability, agent assumptions and dynamic climate changes. Climatic Change 45:203–221. doi:10.1023/A:1005657421149

    Article  Google Scholar 

  23. Smit B, Burton I, Klein RJT, Wandel J (2000) An anatomy of adaptation to climate change and variability. Climatic Change 45:223–251. doi:10.1023/A:1005661622966

    Article  Google Scholar 

  24. Stern N (2006) The economics of climate change. The Stern review. Cambridge University Press. ISBN 9780521700801

  25. Tol RSJ, Fankhauser S, Smith JB (1998) The scope for adaptation to climate change: what can we learn from the impact literature? Global Environ Change 8(2):109–123. doi:10.1016/S0959-3780(98)00004-1

    Article  Google Scholar 

  26. West JJ, Small MJ, Dowlatabadi H (2001) Storms, investor decisions, and the economic impacts of sea level rise. Climatic Change 48:317–342. doi:10.1023/A:1010772132755

    Article  Google Scholar 

  27. World Bank (2006) Clean energy and development: towards an investment framework. Technical report, The World Bank, Environmentally and Socially Sustainable Development Vice Presidency, Infrastructure Vice Presidency. http://go.worldbank.org/BEUCQN31A0

Download references


We acknowledge financial support from the Ile de France region under the R2DS research programme and from the ANR research project AMTools. We would like to thank S. Hallegatte, C. Böhringer, EAERE participants and two anonymous reviewers for their useful comments.

Author information



Corresponding author

Correspondence to Patrice Dumas.

Appendix: Calibration

Appendix: Calibration

The emission function parameters and the technical change rate are fitted using the SRES A1 scenario trajectory from the AIM model (Intergovernmental Panel on Climate Change 2000). The initial protection capital is only composed of one type of capital, which is the capital associated with the initial temperature. It is assumed that at the starting point the economy is on the balanced growth path. To scale the production function, it is assumed that

$$ K^T_0 = (1-\nu) K_0 + {\left(\eta {(\nu K_0)}^\rho + \gamma {\left(K^1_0\right)}^\rho\right)}^{\frac{1}{\rho}} $$

The number of different protection capital types is chosen sufficiently high such that it does not influence the result. In the central case, model parameters are defined as in Table 4 below:

Table 4 Model parameters, central case

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dumas, P., Ha-Duong, M. Optimal growth with adaptation to climate change. Climatic Change 117, 691–710 (2013). https://doi.org/10.1007/s10584-012-0601-7

Download citation


  • Capital Stock
  • Climate Change Adaptation
  • Protection Investment
  • Productive Capital
  • Integrate Assessment Model