Skip to main content

Estimating greenhouse gas emissions from cattle raising in Brazil


The study estimated, for the first time, the greenhouse gas emissions associated with cattle raising in Brazil, focusing on the period from 2003 to 2008 and the three principal sources: 1) portion of deforestation resulting in pasture establishment and subsequent burning of felled vegetation; 2) pasture burning; and 3) bovine enteric fermentation. Deforestation for pasture establishment was only considered for the Amazon and Cerrado. Emissions from pasture burning and enteric fermentation were accounted for the entire country. The consolidated emissions estimate lies between approximately 813 Mt CO2eq in 2008 (smallest value) and approximately 1,090 Mt CO2eq in 2003 (greatest value). The total emissions associated with Amazon cattle ranching ranged from 499 to 775 Mt CO2eq, that of the Cerrado from 229 to 231 Mt CO2eq, and that of the rest of the country between 84 and 87 Mt CO2eq. The full set of emissions originating from cattle raising is responsible for approximately half of all Brazilian emissions (estimated to be approximately 1,055 Mt CO2eq in 2005), even without considering cattle related sources not explicitly estimated in this study, such as energy use for transport and refrigeration along the beef and derivatives supply chain. The potential for reduction of greenhouse gas emissions offered by the Brazilian cattle industry is very high and might constitute Brazil’s most important opportunity for emissions mitigation. The study offers a series of policy recommendations for mitigation that can be implemented by public and private administrators at a low cost relative to other greenhouse gas reduction options.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Geographic macroregions are not congruent with biome boundaries, but provide a rough approximation of the area in respective biomes.

  2. 2.

    Municipality based census data provides information on the relative percentage of pasture areas in relation to other agricultural land uses. Assuming the sum of these land uses cover the deforested area, we distribute these percentages over the deforested areas in each municipality.

  3. 3.

    There is a difference in the numbers computed this way and the official rate, which is computed using a specific formula to account for the time scaling in the year (see INPE 2009 for details). In our current models, we use directly the spatially derived information, disregarding the official rate computation approach.


  1. Abicalçados—Associação Brasileira das Indústrias de Calçados—Brazilian Footwear Industries Association (2009) Available at

  2. Aguiar AP, Ometto JPHB, Nobre C, Lapolla D, Almeida C, Vieira IC, Soares JV, Alvalla R, Saatchi S, Valeriano D (2011) Amazon deforestation carbon emissions: revealing the process spatial and temporal heterogeneity (Submitted to Global Change Biology)

  3. Aguiar AP, Ometto JPHB, Nobre C, Câmara G, Longo K, Alvalá R, Araújo R (2009) “Estimativa de emissões de gases do efeito estufa por desmatamento na Amazônia Brasileira”. Available at:

  4. Aguiar APD, Câmara G, Escada MI (2007) Spatial statistical analysis of land-use determinants in the Brazilian Amazonia: exploring intra-regional heterogeneity. Ecol Model 209:169–188

    Article  Google Scholar 

  5. Aguiar APD (2006) Modeling land use change in the Brazilian Amazon: exploring the intra-regional heterogeneity. PhD Thesis, INPE, São José dos Campos, SP, Brazil, pp 204

  6. Almeida A, Stone T, Vieira ICG, Davidson E (2010) Non-frontier deforestation in the Eastern Amazon. Earth Interact 14(1):1–15

    Article  Google Scholar 

  7. Américo MC, Vieira IC, Araújo R, Veiga JB (2010) “A pecuária como elemento central na reestruturação do território na Amazônia: o caso da rodovia PA-279 e da Terra do Meio no Pará” in ARAÚJO, R. & Lena, P. (Orgs.) Desenvolvimento Sustentável e Sociedades na Amazônia MPEG/PPG-7, BELÉM

  8. Amigos da Terra—Amazônia Brasileira, National Wildlife Federation, Defra, Embrapa, Aliança da Terra, Imazon and Greenpeace: “ Summary of the International Workshop on Solutions for Deforestation and GHG Emissions Caused by the Expansion of Cattle Ranching”. Acre and São Paulo, 2009

  9. Andrade SMA, Neto WN, Miranda HS (1999) The dynamics of components of the fine fuel after recurrent prescribed fires in Central Brazil savannas, Proceedings of the Bushfire 99 Conference, Alburn, Australia

  10. Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Global Biogeochem Cy 15:955–966. doi:10.1029/2000GB001382

    Article  Google Scholar 

  11. Artaxo P, Gatti LV, Leal AMC, Longo KM, Freitas SR, Lara LL, Pauliquevis TM, Procópio AS, Rizzo LV (2005) Química atmosférica na Amazônia: a floresta e as emissões de queimadas controlando a composição da atmosfera amazônica. Acta Amaz 35(2):185–196

    Article  Google Scholar 

  12. Barcellos AO (1996) Sistemas extensivos e semi-intensivos de produção: Pecuária bovina de corte nos Cerrados. In: Pereira RC, Nasser LCB (eds) Proceedings of the 1st. International Symposium on Tropical Savannas, EMBRAPA-CPAC, pp 130–136

  13. Becker B (2001) Revisão das Políticas de Ocupação da Amazônia: é possível identificar modelos para projetar cenários? Parcerias Estratégicas 12:135–159,

    Google Scholar 

  14. Becker B (2004) Amazônia: geopolítica na virada do III milênio. Garamond, Rio de Janeiro

    Google Scholar 

  15. Bertschi IT, Yokelson RJ, Ward DE, Babbitt RE, Susott RA, Goode JG, Hao WM (2003) Trace gas and particle emissions from fires in large-diameter and belowground biomass fuels. J Geophys Res 108:8472. doi:10.1029/2002JD002100

    Article  Google Scholar 

  16. Boschetti L, Roy D, Hoffmann AA (2009) MODIS collection 5 burned area product—MCD45 user’s guide, version 2.0 (WWW document). (accessed on September 8, 2011)

  17. Boschetti L, Roy D, Barbosa P, Boca R, Justice CO (2007) A MODIS assessment of the summer 2007 extent burned in Greece. Int J Rem Sens 29(8):2433–2436

    Article  Google Scholar 

  18. Bustamante MMC, Corbeels M, Scopel E, Roscoe R (2006) Soil carbon sequestration potential in the Cerrado region. In: Lal R, Cerri CC, Bernoux M, Etchevers J (eds) Carbon sequestration in soils of Latin America. The Haworth Press, Nova Iorque, pp 285–304

    Google Scholar 

  19. Carvalho JA, Higuchi N, Araujo TM, Santos JC (1998) Combustion completeness in a rainforest clearing experiment in Manaus, Brazil. J Geophys Res 103:13195–13199. doi:10.1029/98JD00172

    Article  Google Scholar 

  20. Carvalho JA, Costa FS, Veras CAG, Sandberg DV, Alvarado EC, Gielow R, Serra AM, Santos JC (2001) Biomass fire consumption and carbon release rates of rainforest-clearing experiments conducted in northern Mato Grosso, Brazil. J Geophys Res 106:17877–17887. doi:10.1029/2000JD900791

    Article  Google Scholar 

  21. Castro EA, Kauffman JB (1998) Ecosystem structure in the Brazilian Cerrado: a vegetation gradient of aboveground biomass, root mass and consumption by fire. J Trop Ecol 14:263–283

    Article  Google Scholar 

  22. Cederberg C, Meyer D, Flysjö A (2009) Life cycle inventory of greenhouse gas emissions and use of land and energy in Brazilian beef production. Swedish Institute for Food and Biotechnology.

  23. CIBC—Centro da Indústria de Curtumes do Brasil—Center for the Brazilian Tanning Industry (2009)

  24. CNPC—Conselho Nacional de Pecuária de Corte—National Beef Cattle Council (2011) Balanço de Pecuária Bovídea de Corte: 1994–2010.

  25. Coutinho LM (1990) Fire in the ecology of the Brazilian cerrado. In: Goldammer JG (ed) Fire in the tropical biota: ecosystem processes and global challenges. Springer, Berlin, pp 82–105

    Google Scholar 

  26. Escada MI, Vieira IC, Kampel S, Araújo R, Veiga JB, Aguiar APD, Veiga I, Oliveira M, Pereira JG, Carneiro A, Fearnside PM, Venturieri A, Carriello F, Thales M, Carneiro TS, Monteiro AM, Câmara C (2005) Processos de ocupação nas novas fronteiras da Amazônia (o interflúvio do Xingu/Iriri). Estudos Avançados—Dossiê Amazônia Brasileira II 19(54):9–24

    Google Scholar 

  27. Espindola G, de Aguiar APD, Pebesma E, Câmara G, Fonseca L (2012) Agricultural land use dynamics in the Brazilian Amazon based on remote sensing and census data. Appl Geogr (Sevenoaks) 32:240–252

    Google Scholar 

  28. FAO. U.N. Food and Agriculture Organization (2006) Livestock’s long shadow: environmental issues and options. FAO/LEAD.

  29. Fearnside PM, Leal N, Fernandes FM (1993) Rainforest burning and the global budget: biomass, combustion efficiency, and charcoal formation in the Brazilian Amazon. J Geophys Res 98:16733–16744

    Article  Google Scholar 

  30. Fearnside PM, Barbosa RI (1998) Soil carbon changes from conversion of forest to pasture in Brazilian Amazon. Forest Ecol Manag 108:147–166

    Article  Google Scholar 

  31. GREENPEACE (2009) Slaughtering the Amazon. Greenpeace International, Amsterdam.

  32. GTPS (2011) Working group on sustainable beef. Website:

  33. Guild LS, Kaufmann JB, Ellingson LJ, Cummings DL, Castro EA, Babbitt RE, Ward DE (1998) Dynamics associated with total above ground biomass, C, nutrient pools, and biomass burning of primary forest and pasture in Rondônia, Brazil during SCAR-B. J Geophys Res 103:32091–32100. doi:10.1029/98JD00523

    Article  Google Scholar 

  34. IBGE—Instituto Brasileiro de Geografia e Estatística—Brazilian Institute for Geography and Statistics (2009) Censo Agropecuário 2006. SIDRA (IBGE system for automatic data recovery).

  35. INPE. Instituto Nacional de Pesquisas Espaciais—National Institute for Space Research (2009) PRODES: Assessment of Deforestation in Brazilian Amazonia, São José dos Campos, Brazil. Available at

  36. IPCC (2006) Guidelines for national greenhouse gas inventories. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) National greenhouse gas inventories programme. IGES, Japan

    Google Scholar 

  37. Kauffman JB, Cummings DL, Ward DE (1994) Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian cerrado. J Ecol 82:519–531

    Article  Google Scholar 

  38. Loarie SR, Asner GP, Field CB (2009) Boosted carbon emissions from Amazon deforestation. Geophys Res Lett 36:L14810. doi:10.1029/2009GL037526

    Article  Google Scholar 

  39. Longo KM, Freitas SR, Andreae M, Yokelson R, Artaxo P (2009) Biomass burning, long-range transport of products, and regional and remote impacts. In: Keller M, Bustamante M, Gash J, Dias PS (Org.) Amazonia and Global Change, American Geophysical Union, v. 186

  40. LWG (2011) Leather working group. Website:

  41. Maia SMF, Ogle SM, Cerri CEP, Cerri CC (2009) Effect of grassland management on soil carbon sequestration in Rondonia and Mato Grosso states, Brazil. Geoderma 149:84–91

    Article  Google Scholar 

  42. Margulis S (2004) Causes of deforestation in Brazilian Amazon. World Bank Working Paper 22. Washington: World Bank

  43. Neill C, Davidson EA (1999) Soil carbon accumulation for loss following deforestation for pasture in the Brazilian Amazon. In: Lal R, Kimble JM, Stewart BA (eds) Global climate change and tropical ecosystems. CRC Press, Boca Raton, pp 197–211

    Google Scholar 

  44. Oliveira OC, Oliveira IP, Alves BJR, Urquiaga S (2004) Chemical and biological indicators of decline/degradation of Brachiaria pastures in the Brazilian Cerrado. Agr Ecosyst Environ 103:289–300

    Article  Google Scholar 

  45. Ottmar RD, Vihnanek RE, Miranda HS, Sato MN, Andrade SM (2001) Stereo photo series for quantifying Cerrado fuels in Central Brazil—Volume I. Gen. Tech. Rep. PNW-GTR-519. Portland: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station

  46. Perón AJ, Evangelista AR (2004) Degradação de pastagens em regiões de Cerrado. Ciênc Agrotec 28(3):655–661

    Article  Google Scholar 

  47. PROBIO. Projeto de Conservação e Utilização Sustentável da Diversidade Biológica Brasileira (2004)

  48. Reiners WA, Bouwman AF, Parsons WFJ, Keller M (1994) Tropical rain-forest conversion to pasture—changes in vegetation and soil properties. Ecol Appl 4:363–377

    Article  Google Scholar 

  49. Roscoe R, Buurman P, Velthorst EJ, Vasconcellos CA (2001) Soil organic matter dynamics in density and particle size fractions as revealed by the 13C/12C isotopic ratio in a Cerrado’s oxisol. Geoderma 104:185–202

    Article  Google Scholar 

  50. Roy DP, Jin Y, Lewis PE, Justice CO (2005) Prototyping a global algorithm for systematic fire affected area mapping using MODIS time series data. Rem Sens Environ 97:137–162

    Article  Google Scholar 

  51. Saatchi SS, Houghton RA, dos Santos Alvalá RC, Soares JV, Yu Y (2007) Distribution of aboveground live biomass in the Amazon basin. Global Change Biol 13(4):816–837

    Article  Google Scholar 

  52. Santos AJB, Quesada CA, da Silva GT, Maia JF, Miranda HS, Miranda AC, Lloyd J (2004) High rates of net ecosystem carbon assimilation by Brachiaria pasture in the Brazilian Cerrado. Global Change Biol 10:877–885

    Article  Google Scholar 

  53. Serrão EAS, Uhl C, Nepstad DC (1993) Deforestation for pasture in the humid tropics: is it economically and environmentally sound in the long term? XVII International Grassland Congress. New Zealand Grassland Association, Rockhampton, pp 2215–2221

    Google Scholar 

  54. Smeraldi R, May PH (2008) O reino do gado: a nova expansão da pecuária na Amazônia brasileira. Amigos da Terra-Amazônia Brasileira, São Paulo.

  55. Smeraldi R, May PH (2009) A hora da conta: pecuária, Amazônia e conjuntura. Amigos da Terra–Amazônia Brasileira, São Paulo. Available online at:

  56. Vieira JM, Kichel AN (1995) Estabelecimento e recuperação de pastagens de Panicum maximum. XII Simpósio sobre Manejo de Pastagens. FEALQ, Piracicaba, pp 147–196

    Google Scholar 

  57. Ward DE, Susott RA, Kauffman JB, Babbitt RE, Cummings DL, Dias B, Holden BN, Kaufman YJ, Rasmussen RA, Setzer AW (1992) Smoke and fire characteristics for Cerrado and deforestation burns in Brazil: BASE-B experiment. J Geophys Res 97:14601–14619. doi:10.1029/92JD01218

    Article  Google Scholar 

Download references


This study received support from the National Institute for Space Research (INPE) and from the British Embassy in Brasília. We also acknowledge Ms. Zoraida Soeiro, of the Center for Science on Terrestrial Systems at INPE, for her support toward the realization of working meetings.

Author information



Corresponding author

Correspondence to Mercedes M. C. Bustamante.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online resource 1

(PDF 136 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bustamante, M.M.C., Nobre, C.A., Smeraldi, R. et al. Estimating greenhouse gas emissions from cattle raising in Brazil. Climatic Change 115, 559–577 (2012).

Download citation


  • Burned Area
  • Cattle Herd
  • Pasture Area
  • Deforestation Rate
  • Enteric Fermentation