Skip to main content

20th century seasonal moisture balance in Southeast Asian montane forests from tree cellulose δ18O

Abstract

The seasonally varying moisture balance in a montane forest of Southeast Asia is reconstructed for the 20th century from the oxygen isotopic composition (δ18O) of subannual tree cellulose samples of Pinus kesiya growing at 1,500 m elevation on Doi Chiang Dao in northern Thailand. The cellulose δ18O values exhibit a distinctive annual cycle with amplitude of up to 12 ‰, which we interpret to represent primarily the seasonal cycle of precipitation δ18O. The annual mean δ18O values correlate significantly with the amount of summer monsoon precipitation, and suggest a temporal weakening relationship between the South Asian monsoon and El Niño-Southern Oscillation over the late 20th century. The cellulose δ18O annual maxima values, which reflect the dry season moisture status, have declined progressively over the 20th century by about 3.5 ‰. We interpret this to indicate a change in the contribution of the isotopically distinct fog water to the dry season soil moisture in response to rising temperature as well as deforestation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Allan R, Ansell T (2006) A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J Clim 19(22):5816–5842

    Article  Google Scholar 

  • Anchukaitis KJ, Evans MN (2010) Tropical cloud forest climate variability and the demise of the Monteverde golden toad. PNAS 107(11):5036–5040

    Article  Google Scholar 

  • Araguas-Araguas L, Froehlich K, Rozanski K (1998) Stable isotope composition of precipitation over Southeast Asia. J Geophys Res-Atmos 103(D22):28721–28742

    Article  Google Scholar 

  • Bruijnzeel LA (2002) Hydrology of tropical montane cloud forests: a reassessment. In: Gladwell JS (ed) Proceedings of the second international colloquium on hydrology and water management in the humid tropics. IHP-UNESCO, Paris

  • Bruijnzeel LA, Burkard R, Eugster W (2005) Fog as a hydrologic input. In: Anderson MG, McDonnell JJ (eds) Encyclopaedia of hydrological sciences. John Wiley & Sons: Chichester, pp 559–582

  • Bubb P, May I, Miles L, Sayer J (2004) Cloud forest agenda. UNEP-WCMC, Cambridge, UK

    Google Scholar 

  • Buckley BM, Anchukaitis KJ, Penny D, Fletcher R, Cook ER, Sano M, Le CN, Wichienkeeo A, Ton TM, Truong MH (2010) Climate as a contributing factor in the demise of Angkor, Cambodia. Proc Natl Acad Sci U S A 107(15):6748–6752

    Article  Google Scholar 

  • Cook BI, Buckley BM (2009) Objective determination of monsoon season onset, withdrawal, and length. J Geophys Res-Atmos 114. doi:10.1029/2009JD012795

  • Delang CO (2002) Deforestation in Northern Thailand: the result of Hmong farming practices or Thai development strategies? Soc Nat Resour 15(6):483–501

    Article  Google Scholar 

  • Diaz HF, Graham NE (1996) Recent changes in tropical freezing heights and the role of sea surface temperature. Nature 383(6596):152–155

    Article  Google Scholar 

  • Foster P (2001) The potential negative impacts of global climate change on tropical montane cloud forests. Earth Sci Rev 55(1–2):73–106

    Article  Google Scholar 

  • Gazis C, Feng XH (2004) A stable isotope study of soil water: evidence for mixing and preferential flow paths. Geoderma 119:97–111

    Article  Google Scholar 

  • Gonfiantini R, Longinelli A (1962) Oxygen isotopic composition of fogs and rains from North Atlantic. Experientia 18(5):222–223

    Article  Google Scholar 

  • Ingraham NL, Matthews RA (1990) A stable isotopic study of fog—the Point Reyes Peninsula, California, USA. Chem Geol 80(4):281–290

    Google Scholar 

  • Joswiak DR, Yao T, Wu G, Xu B, Zheng W (2010) A 70-yr record of oxygen-18 variability in an ice core from the Tanggula Mountains, central Tibetan Plateau. Clim Past 6(2):219–227

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471

    Article  Google Scholar 

  • Kumar KK, Rajagopalan B, Cane MA (1999) On the weakening relationship between the Indian monsoon and ENSO. Science 284(5423):2156–2159

    Article  Google Scholar 

  • Lawton RO, Nair US, Pielke RA, Welch RM (2001) Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science 294(5542):584–587

    Google Scholar 

  • Liu WJ, Liu WY, Li PJ, Gao L, Shen YX, Wang PY, Zhang YP, Li HM (2007) Using stable isotopes to determine sources of fog drip in a tropical seasonal rain forest of Xishuangbanna, SW China. Agric For Meteorol 143(1–2):80–91

    Article  Google Scholar 

  • May W (2004) Potential future changes in the Indian summer monsoon due to greenhouse warming: analysis of mechanisms in a global time-slice experiment. Clim Dyn 22(4):389–414

    Article  Google Scholar 

  • Parthasarathy B, Munot AA, Kothawale DR (1994) All-India monthly and seasonal rainfall series—1871–1993. Theor Appl Climatol 49(4):217–224

    Article  Google Scholar 

  • Pausata FSR, Battisti DS, Nisancioglu KH, Bitz CM (2011) Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event. Nat Geosci. doi:10.1038/NGEO1169

  • Pounds JA, Fogden MPL, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature 398(6728):611–615

    Article  Google Scholar 

  • Poussart PF, Schrag DP (2005) Seasonally resolved stable isotope chronologies from northern Thailand deciduous trees. Earth Planet Sci Lett 235(3–4):752–765

    Article  Google Scholar 

  • Pumijumnong N, Wanyaphet T (2006) Seasonal cambial activity and tree-ring formation of Pinus merkusii and Pinus kesiya in Northern Thailand in dependence on climate. For Ecol Manag 226:279–289

    Article  Google Scholar 

  • Quinn TM, Taylor FW, Crowley TJ (2006) Coral-based climate variability in the Western Pacific Warm Pool since 1867. J Geophys Res-Oceans C11006. doi:10.1029/2005jc003243

  • Ray DK, Nair US, Lawton RO, Welch RM, Pielke RA (2006) Impact of land use on Costa Rican tropical montane cloud forests: sensitivity of orographic cloud formation to deforestation in the plains. J Geophys Res-Atmos D02108. doi:10.1029/2005jd006096

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res-Atmos 108(D14) doi:10.1029/2002jd002670

  • Roden JS, Johnstone JA, Dawson TE (2009) Intra-annual variation in the stable oxygen and carbon isotope ratios of cellulose in tree rings of coast redwood (Sequoia sempervirens). Holocene 19(2):189–197

    Article  Google Scholar 

  • Roden JS, Lin GG, Ehleringer JR (2000) A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochim Cosmochim Acta 64(1):21–35

    Article  Google Scholar 

  • Sano M, Buckley BM, Sweda T (2009) Tree-ring based hydroclimate reconstruction over northern Vietnam from Fokienia hodginsii: eighteenth century mega-drought and tropical Pacific influence. Clim Dyn 33(2–3):331–340. doi:10.1007/s00382-008-0454-y

    Article  Google Scholar 

  • Sano M, Sheshshayee MS, Managave S, Ramesh R, Sukumar R, Sweda T (2010) Climatic potential of delta O-18 of Abies spectabilis from the Nepal Himalaya. Dendrochronologia 28(2):93–98. doi:10.1016/j.dendro.2009.05.005

    Article  Google Scholar 

  • Santisuk T (1988) An account of the vegetation of northern Thailand. Geological research, vol 5. Franz Steiner Verlag Wiesbaden GMBH, Stuttgart

    Google Scholar 

  • Singhrattna N, Rajagopalan B, Kumar KK, Clark M (2005) Interannual and interdecadal variability of Thailand summer monsoon season. J Clim 18(11):1697–1708

    Article  Google Scholar 

  • Sternberg LDLO (2009) Oxygen stable isotope ratios of tree-ring cellulose: the next phase of understanding. New Phytol 181(3):553–562. doi:10.1111/j.1469-8137.2008.02661.x

    Article  Google Scholar 

  • Still CJ, Foster PN, Schneider SH (1999) Simulating the effects of climate change on tropical montane cloud forests. Nature 398(6728):608–610

    Article  Google Scholar 

  • Ueda H, Iwai A, Kuwako K, Hori ME (2006) Impact of anthropogenic forcing on the Asian summer monsoon as simulated by eight GCMs. Geophys Res Lett 33(6) doi:10.1029/2005gl025336

  • Vuille M, Werner M, Bradley RS, Keimig F (2005) Stable isotopes in precipitation in the Asian monsoon region. J Geophys Res-Atmos 110(D23) doi:10.1029/2005jd006022

  • Webster PJ (1995) The annual cycle and the predictability of the tropical coupled ocean–atmosphere system. Meteorog Atmos Phys 56:33–55

    Article  Google Scholar 

  • Wolseley PA, AguirreHudson B (1997) The ecology and distribution of lichens in tropical deciduous and evergreen forests of northern Thailand. J Biogeogr 24(3):327–343

    Article  Google Scholar 

  • Xie PP, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78(11):2539–2558

    Article  Google Scholar 

  • Yoshimura K, Kanamitsu M, Noone D, Oki T (2008) Historical isotope simulation using reanalysis atmospheric data. J Geophys Res-Atmos 113(D19) doi:10.1029/2008jd010074

  • Yoshimura K, Oki T, Ohte N, Kanae S (2004) Colored moisture analysis estimates of variations in 1998 Asian monsoon water sources. J Meteorol Soc Jpn 82(5):1315–1329

    Article  Google Scholar 

  • Yuan DX, Cheng H, Edwards RL, Dykoski CA, Kelly MJ, Zhang ML, Qing JM, Lin YS, Wang YJ, Wu JY, Dorale JA, An ZS, Cai YJ (2004) Timing, duration, and transitions of the Last Interglacial Asian Monsoon. Science 304(5670):575–578

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Miguel Rincon for analytical assistance, Max Berkelhammer for helpful discussion, Julien Emile-Geay for advice on statistical approaches used in this study, and the three anonymous reviewers for their comments and suggestions. This study was funded by National Science Foundation award AGS-0902507.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengfan Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 325 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhu, M., Stott, L., Buckley, B. et al. 20th century seasonal moisture balance in Southeast Asian montane forests from tree cellulose δ18O. Climatic Change 115, 505–517 (2012). https://doi.org/10.1007/s10584-012-0439-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-012-0439-z

Keywords

  • Tree Ring
  • Montane Forest
  • Empirical Orthogonal Function Mode
  • South Asian Summer Monsoon
  • Tropical Montane Forest