Skip to main content

Advertisement

Log in

Observed temperature evolution in the City of Sfax (Middle Eastern Tunisia) for the period 1950–2007

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

This paper studies temperature evolution in the city of Sfax (Middle Eastern Tunisia, with more than 600 000 people) from 1950 to 2007. Daily maximum and minimum temperatures recorded at Sfax observatory from 1950 to 2007 are analysed by studying their homogeneity, possible trends and their statistical significance. Linear regression, Student and Mann–Kendall trend test were applied to annual mean minimum and maximum temperature data to determine the existence and significance of trends. Using a number of statistical tests, it is found that the data measured at the surface station represent a non homogenous time-series. Furthermore, mean annual and monthly temperatures are evaluated and a statistically significant trend starting from year 1950 was found. Important increase of the surface temperature in the City of Sfax was found after 1984. The increase in the surface temperature in the city of Sfax is further associated with global, regional (e.g. Mediterranean area) and meso-scale temperature increase. In addition, the spatial pattern of surface temperature in the city of Sfax from 1982 to 2007 shows that the overall land surface temperature increased with the expansion of Urban Heat Island (UHI) from urban areas to suburban districts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Average daily temperature = maximum + minimum temperatures/2

References

  • Ahrens DC (2008) Meteorology today: an introduction to weather, climate, and the environment, 8th edn. Brooks/Cole, Pacific Grove

    Google Scholar 

  • Angell JK (1993) Comparison of stratospheric warming following Agung, El Chichen and Pinatubo volcanic eruptions. Geophys Res Lett 20:715–718

    Article  Google Scholar 

  • Bartzokas A, Metaxas DA (1991) Climatic fluctuations of temperature and air circulation in the Mediterranean. In: Duplessey JC, Pons A, Fantechi R (eds) Proceedings of the course on climate and global change of the European School of Climatology and Natural Hazards. Arles, European Commission, Luxembourg, pp 279–298

    Google Scholar 

  • Bois P (1986) Contrôle des séries chronologiques corrélées par étude du cumul des résidus. Deuxièmes Journées Hydrologiques de l’ORSTOM, Montpellier 89–100

  • Buishand TA (1982) Some methods for testing the homogeneity of rainfall records. J Hydrol 58:11–27

    Article  Google Scholar 

  • Carrega P, Dauphiné A (1984) Les températures décadaires a’ Lisbonne et Marseille. Etude de longues series. Revue de Géographie de l’Est 24:65–78

    Google Scholar 

  • Caussinus H, Mestre O (2004) Detection and correction of artificial shifts in climate series. Appl Stat 53(3):405–425

    Article  Google Scholar 

  • Charfi S, Dahech S, Carrega P (2010) Apport de l’imagerie spatiale dans l’étude de l’îlot de chaleur urbain à Tunis : étude multi-scalaire. 23ème colloque de l’Association Internationale de Climatologie, Rennes, 119–124

  • Colacino M, Rovelli A (1983) The yearly averaged air-temperature in Rome from 1782 to 1975. Tellus 35A:389–397

    Article  Google Scholar 

  • Conte M, Giuffrida A, Tedesco S (1989) The Mediterranean oscillation. Impact on precipitation and hydrology in Italy. In Conference on Climate, Water, Pub. Of the Academy of Finland, Helsinki, pp 121–137

  • Dahech S (2007) Le vent à Sfax (Tunisie), impacts sur le climat et la pollution atmosphérique. Thèse de doctorat de l’Université Paris VII, 309 p + annexes

  • Dahech S, Beltrando G, Bigot S (2005) Utilisation des données NOAA-AVHRR dans l’étude de la brise thermique et de l’Ilot de chaleur à Sfax (sud-est tunisien). Cybergéo 317:19 p

    Google Scholar 

  • Dahech S, Beltrando G, Henia L (2007) Le sirocco et son impact sur l’agriculture et la qualité de l’air dans la région de Sfax (Tunisie). Sécheress 18(3):177–184

    Google Scholar 

  • Delfin FG, Sussman D, Ruaya JR, Reyes AG (1992) Hazard assessment of the Pinatubo volcanic-geothermal system: clues prior to the June 15, 1991 eruption. Geotherm Res Counc Trans 16:519–527

    Google Scholar 

  • Deschamps PY, Phulpin T (1980) Atmospheric correction of infrared measurements of sea surface temperature using channels at 3.7, 11 and 12 μm. Bound Layer Meteorol 18:131–143

    Article  Google Scholar 

  • Gaffin SR, Rosenzweig C, Khanbilvardi R, Parshall L, Mahani S et al (2008) Variations in New York City’s urban heat island strength over time and space. Theor Appl Climatol 94:1–11

    Article  Google Scholar 

  • Gallo KP, Mac Naba L, Karl TR, Brown JF, Tarpley JD (1993) The use of NOAA-AVHRR data for assessment of the urban heat island effect. J Appl Meteorol 32:899–908

    Article  Google Scholar 

  • Giles BD, Flocas A (1984) Air temperature variations in Greece. Persistence, trend and fluctuations. J Clim 4:531–540

    Article  Google Scholar 

  • Hamdi R, Schayes G (2008) Sensitivity study of the urban heat island intensity to urban characteristics. Int J Climatol 28:973–982

    Article  Google Scholar 

  • Hasanean HM (2004) Wintertime surface temperature in Egypt in relation to the associated atmospheric circulation. Int J Climatol 24:985–999

    Article  Google Scholar 

  • Hénia L (1980) Le sirocco et les types de circulation à sirocco en Tunisie. Revue Tunisienne de Géographie 5:61–87

    Google Scholar 

  • Hu Y, Jia G (2010) Influence of land use change on urban heat island derived from multi-sensor data. Int J Climatol 30:1382–1395

    Google Scholar 

  • Hubert P, Carbonnel JP, Chaouche A (1989) Segmentation des séries hygrométriques. Application à des séries de précipitations et de débits de l’Afrique de l’Ouest. J Hydrol 110:349–367

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2007) Climate change 2007: the physical science basis. Working Group 1 contribution to the fourth assessment of the Intergovernmental Panel on Climate Change, summary for policymakers, technical summary and frequently asked questions. Cambridge University Press, Cambridge

    Google Scholar 

  • Jolliffe IT (2002) Principal Component Analysis, 2nd edn. Springer-Verlag New York, Inc

  • Jones PD (1988) Hemispheric surface air temperature variations recent trends and an update to 1987. J Clim 1:654–660

    Article  Google Scholar 

  • Jones PD, Lister DH (2009) The Urban Heat Island in Central London and urban-related warming trends in Central London since 1900. Weather 65:323–327

    Article  Google Scholar 

  • Jones PD, Moberg A (2003) Hemispheric and large-scale surface air temperature variations: an extensive revision and an update to 2001. J Clim 16:206–223

    Article  Google Scholar 

  • Kutiel H, Maheras P (1998) Variations in temperature regime across the Mediterranean during the last century and their relationship with circulation indices. Theor Appl Climatol 61:39–53

    Article  Google Scholar 

  • Laraque A, Mahé G, Orange D, Marieu B (2001) Spatiotemporal variations in hydrological regimes within Central Africa During the XXth century. J Hydrol 245:104–117

    Article  Google Scholar 

  • Lee AFS, Heghnian SM (1977) A shift of the mean level in a sequence of independent normal random variables- A Bayesisian approach. Technometrics 19(4):503–506

    Google Scholar 

  • Lo Vecchio G, Nanni T (1995) The variation of the atmospheric temperature in Italy during the last one hundred years and its relationship with Solar Output. Theor Appl Climatol 51(3):159–165

    Google Scholar 

  • Maheras P (1983) Climatologie de la mer Egée et de ses marges continentales. Thèse d’Etat, Atelier de Reproduction de Thèse. Universite Lille III, 783 p

  • Maheras P (1989) Principal component analysis of western Mediterranean air temperature variations 1866–1985. Theor Appl Climatol 39:137–145

    Article  Google Scholar 

  • Maheras P, Kutiel H (1999) Spatial and temporal variations in the temperature regime in the Mediterranean and their relationship with circulation during the last century. Int J Climatol 19:745–764

    Article  Google Scholar 

  • Maheras P, Kutiel H, Kolyva-Machera F (1996) Variations spatiales et temporelles des températures hivernales au-dessus de a Méditerranée durant la dernière période séculaire. Publication de l’Association Internationale de Climatologie 9:454–462

    Google Scholar 

  • Maheras P, Xoplaki E, Kutiel H (1999) Wet and dry monthly anomalies across the Mediterranean basin and their relationship with circulation 1860–1990. Theor Appl Climatol 64:189–199

    Article  Google Scholar 

  • Metaxas D, Bartzokas A, Vitsas A (1991) Temperature fluctuations in the Mediterranean area during the last 120 years. Int J Climatol 11:897–908

    Article  Google Scholar 

  • Oke TR (1976) The distinction between canopy and boundary-layer urban heat islands. Atmos 14:268–277

    Google Scholar 

  • Parker DE, Wilson H, Jones PD, Christy JR, Folland CK (1996) The impact of Mount Pinatubo on world-wide temperatures. Int J Climatol 16:487–497

    Article  Google Scholar 

  • Peterson TC, Easterling DR, Karl TR, Groisman P, Nicholls N, Plummer N, Torok S, Auer I, Boehm R, Gullett D, Vincent L, Heino R, Tuomenvirta H, Mestre O, Szentimrey T, Salinger J, Forland EJ, Hanssen-Bauer I, Alexandersson H, Jones P, Parker D (1998) Homogeneity adjustments of in situ atmospheric climate data: a review. Int J Climatol 18:1493–1517

    Article  Google Scholar 

  • Pettitt AN (1979) A non-parametric approach of change-point problem. Appl Statist 28(2):126–135

    Article  Google Scholar 

  • Repapis C, Philandras C (1988) A note on the air temperature trends of the last 100 years as evidenced in the eastern Mediterranean time series. Theor Appl Climatol 39:93–107

    Article  Google Scholar 

  • Sahin S, Cigizoglu HK (2010) Homogeneity analysis of Turkish meteorological data set. Hydrolog Process 24:981–992

    Article  Google Scholar 

  • Serra C, Burguen A, Lana X (2001) Analysis of maximal and minimum daily temperature recorded at Fabra observatory (Barcelona, NE Spain) in the period 1917–1998. Int J Climatol 21:617–636

    Article  Google Scholar 

  • Solow AR (1987) Testing of climate change: an application of the twophase regression model. J Clim Appl Meteorol 26:1401–1405

    Article  Google Scholar 

  • Tayanç M, Karaca M, Yenigün O (1997) Annual and seasonal air temperature trends patterns of climate change and urbanization effects in relation with air pollutants in Turkey. J Geophys Res 102(2):1909–1919

    Article  Google Scholar 

  • Tuomenvirta H (2001) Homogeneity adjustments of temperature and precipitation series -Finnish and Nordic data. Int J Climatol 21(4):495–506

    Article  Google Scholar 

  • Wijngaard J, Klein Tank AMG, Können GP (2003) Homogeneity of 20th century European daily temperature and precipitation series. Int J Climatol 23(6):679–692

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dahech.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahech, S., Beltrando, G. Observed temperature evolution in the City of Sfax (Middle Eastern Tunisia) for the period 1950–2007. Climatic Change 114, 689–706 (2012). https://doi.org/10.1007/s10584-012-0420-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-012-0420-x

Keywords

Navigation