Climatic Change

, Volume 113, Issue 3–4, pp 733–750 | Cite as

No increase in multi-day temperature variability in Austria following climate warming

  • J. Hiebl
  • M. Hofstätter


This paper assesses the extent to which temperature variability has increased in Austria since the late 19th century using a novel objective approach. The approach focuses on multi-day temperature episodes and isolates variability from changes in the long-term mean and seasonal variation. We define and compute three different indices of temperature variability, and find—based on 140 years of data—that temperature variability has evolved independently of mean temperature but with no long-term trend. Early 21st century’s relatively raised temperature variability level is known from late 19th century’s pre-greenhouse climate state.


Volatility Temperature Variability Temperature Climate Late 19th Century Temperature Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank Dr. Reinhard Böhm for sharing his climatological expertise, considerably enriching this article. Furthermore, we appreciate the constructive remarks of three anonymous reviewers, which substantially improved our work.


  1. Auer I, Böhm R, Schöner W (2001) Austrian long-term climate 1767–2000. Multiple instrumental climate time series from Central Europe. Zentralanstalt für Meteorologie und Geodynamik, ViennaGoogle Scholar
  2. Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa K, Jones PD, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin JM, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) HISTALP—historical instrumental climatological surface time series of the greater Alpine region 1760–2003. Int J Climatol 27:17–46. doi: 10.1002/joc.1377 CrossRefGoogle Scholar
  3. Bengtsson L, Hodges KI, Roeckner E, Brokopf R (2006) On the natural variability of the pre-industrial climate. Clim Dynam 27:743–760. doi: 10.1007/s00382-006-0168-y CrossRefGoogle Scholar
  4. Beniston M, Goyette S (2007) Changes in variability and persistence of climate in Switzerland. Exploring 20th century observations and 21st century simulations. Global Planet Change 57:1–15. doi: 10.1016/j.gloplacha.2006.11.004 CrossRefGoogle Scholar
  5. Bergström H, Moberg A (2002) Daily air temperature and pressure series for Uppsala (1722–1998). Clim Chang 53:213–252. doi: 10.1023/A:1014983229213 CrossRefGoogle Scholar
  6. Böhm R (2006) Reconstructing the climate of the 250 years of instrumental records at the northern border of the Mediterranean (the Alps). Nuovo Cimento C 29:13–20. doi: 10.1393/ncc/i2005-10216-0 Google Scholar
  7. Böhm R, Auer I, Brunetti M, Maugeri M, Nanni T, Schöner W (2001) Regional temperature variability in the European Alps 1760–1998 from homogenized instrumental time series. Int J Climatol 21:1779–1801. doi: 10.1002/joc.689 CrossRefGoogle Scholar
  8. Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes. A new dataset from 1850. J Geophys Res 111:D12106. doi: 10.1029/2005JD006548 CrossRefGoogle Scholar
  9. Brunetti M, Maugeri M, Monti F, Nanni T (2006) Temperature and precipitation variability in Italy in the last two centuries from homogenised instrumental time series. Int J Climatol 26:345–381. doi: 10.1002/joc.1251 CrossRefGoogle Scholar
  10. Camuffo D, Jones PD (2002) Improved understanding of past climatic variability from early daily European instrumental sources. Clim Chang 53. doi: 10.1023/A:1014902904197
  11. Casty C, Wanner H, Luterbacher J, Esper J, Böhm R (2005) Temperature and precipitation variability in the European Alps since 1500. Int J Climatol 25:1855–1880. doi: 10.1002/joc.1216 CrossRefGoogle Scholar
  12. Della-Marta PM, Wanner H (2006) A method of homogenizing the extremes and mean of daily temperature measurements. J Climate 19:4179–4197CrossRefGoogle Scholar
  13. Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074. doi: 10.1126/science.289.5487.2068 CrossRefGoogle Scholar
  14. Fischer EM, Schär C (2009) Future changes in daily summer temperature variability: driving processes and role for temperature extremes. Clim Dynam. doi: 10.1007/s00382-008-0473-8
  15. Hiebl J, Auer I, Böhm R, Schöner W, Maugeri M, Lentini G, Spinoni J, Brunetti M, Nanni T, Perĉec Tadić M, Bihari Z, Dolinar M, Müller-Westermeier G (2009) A high-resolution 1961–1990 monthly temperature climatology for the greater Alpine region. Meteorol Z 18:507–530. doi: 10.1127/0941-2948/2009/0403 CrossRefGoogle Scholar
  16. Jones PD, Moberg A (2003) Hemispheric and large-scale surface air temperature variations. An extensive revision and an update to 2001. J Climate 16:206–223CrossRefGoogle Scholar
  17. Kämtz FL (1860) Über die Ableitung mittlerer Resultate aus meteorologischen Beobachtungen. Repetitorium für Meteorologie 1:107–134Google Scholar
  18. Katz RW, Brown BG (1992) Extreme events in a changing climate: variability is more important than averages. Clim Chang 21:289–302CrossRefGoogle Scholar
  19. Klein Tank AMG, Können GP (2003) Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J Climate 16:3665–3680CrossRefGoogle Scholar
  20. Klein Tank AMG, Können GP, Selten FM (2005) Signals of anthropogenic influence on European warming as seen in the trend patterns of daily temperature variance. Int J Climatol 25:1–16. doi: 10.1002/joc.1087 CrossRefGoogle Scholar
  21. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends and extremes since 1500. Science 303:1499–1503. doi: 10.1126/science.1093877 CrossRefGoogle Scholar
  22. Moberg A, Jones PD, Barriendos M, Bergström H, Camuffo D, Cocheo C, Davies TD, Demarée G, Martin-Vide J, Maugeri M, Rodriguez R, Verhoeve T (2000) Day-to-day temperature variability trends in 160- to 275-year-long European instrumental records. J Geophys Res 105:22849–22868. doi: 10.1029/2000JD900300 CrossRefGoogle Scholar
  23. Moberg A, Bergström H, Ruiz Krigsman J, Svanered O (2002) Daily air temperature and pressure series for Stockholm (1756–1998). Clim Chang 53:171–212. doi: 10.1023/A:1014966724670 CrossRefGoogle Scholar
  24. Moberg A, Jones PD, Lister DH, Walther A, Brunet M, Jacobeit J, Alexander LV, Della-Marta PM, Luterbacher J, Yiou P, Chen D, Klein Tank AMG, Saladié O, Sigró J, Aguilar E, Alexandersson H, Almarza C, Auer I, Barriendos M, Begert M, Bergström H, Böhm R, Butler CJ, Caesar J, Drebs A, Founda D, Gerstengarbe FW, Micela G, Maugeri M, Österle H, Pandzic K, Petrakis M, Srnec L, Tolasz R, Tuomenvirta H, Werner PC, Linderholm H, Philipp A, Wanner H, Xoplaki E (2006) Indices for daily temperature and precipitation extremes in Europe analyzed for the period 1901–2000. J Geophys Res 111:D22106. doi: 10.1029/2006JD007103 CrossRefGoogle Scholar
  25. Raible CC, Casty C, Luterbacher J, Pauling A, Esper J, Frank DC, Büntgen U, Roesch AC, Tschuck P, Wild M, Vidale PL, Schär C, Wanner H (2006) Climate variability—observations, reconstructions and model simulations for the Atlantic-European and Alpine region from 1500–2100 AD. Clim Chang 79:9–29. doi: 10.1007/s10584-006-9061-2 CrossRefGoogle Scholar
  26. Schär C, Vidale PL, Lüthi D, Frei C, Haeberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336. doi: 10.1038/nature02300 CrossRefGoogle Scholar
  27. Simolo C, Brunetti M, Maugeri M, Nanni T, Speranza A (2010) Understanding climate change-induced variations in daily temperature distributions over Italy. J Geophys Res 115:D22110. doi: 10.1029/2010JD014088 CrossRefGoogle Scholar
  28. Simolo C, Brunetti M, Maugeri M, Nanni T (2011) Evolution of extreme temperatures in a warming climate. Geophys Res Lett 38:L16701. doi: 10.1029/2011GL048437 CrossRefGoogle Scholar
  29. Toreti A, Kuglitsch FG, Xoplaki E, Luterbacher J, Wanner H (2010) A novel method for the homogenization of daily temperature series and its relevance for climate change analysis. J Climate 23:5325–5331. doi: 10.1175/2010JCLI3499.1 CrossRefGoogle Scholar
  30. Wilks DS (1995) Statistical methods in the atmospheric sciences: an introduction. Academic, San DiegoGoogle Scholar
  31. Yan Z, Jones PD, Davies TD, Moberg A, Bergstrom H, Camuffo D, Cocheo C, Maugeri M, Demaree GR, Verhoeve T, Barriendos M, Rodriguez R, Martin-Vide J, Yang C (2002) Trends of extreme temperatures in Europe and China based on daily observations. Clim Chang 53:355–392. doi: 10.1023/A:1014939413284 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department Climate ResearchCentral Institute for Meteorology and Geodynamics (ZAMG)ViennaAustria

Personalised recommendations