Climatic Change

, Volume 113, Issue 3–4, pp 897–917 | Cite as

The benefits of climate change mitigation in integrated assessment models: the role of the carbon cycle and climate component

  • Andries F. HofEmail author
  • Chris W. Hope
  • Jason Lowe
  • Michael D. Mastrandrea
  • Malte Meinshausen
  • Detlef P. van Vuuren


Integrated Assessment Models (IAMs) are an important tool to compare the costs and benefits of different climate policies. Recently, attention has been given to the effect of different discounting methods and damage estimates on the results of IAMs. One aspect to which little attention has been paid is how the representation of the climate system may affect the estimated benefits of mitigation action. In that respect, we analyse several well-known IAMs, including the newest versions of FUND, DICE and PAGE. Given the role of IAMs in integrating information from different disciplines, they should ideally represent both best estimates and the ranges of anticipated climate system and carbon cycle behaviour (as e.g. synthesised in the IPCC Assessment reports). We show that in the longer term, beyond 2100, most IAM parameterisations of the carbon cycle imply lower CO2 concentrations compared to a model that captures IPCC AR4 knowledge more closely, e.g. the carbon-cycle climate model MAGICC6. With regard to the climate component, some IAMs lead to much lower benefits of mitigation than MAGICC6. The most important reason for the underestimation of the benefits of mitigation is the failure in capturing climate dynamics correctly, which implies this could be a potential development area to focus on.


Discount Rate Carbon Cycle Climate Sensitivity Damage Function Mitigation Scenario 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The contribution of DvV has been supported by the AMPERE project, co-funded by the European Commission within the 7th Framework Programme. The contribution of AH was supported by the COMBINE project under the same Framework Programme. JLs time on this project was supported by the AVOID programme, which is funded by DECC and Defra.

Supplementary material

10584_2011_363_MOESM1_ESM.doc (130 kb)
ESM 1 (DOC 129 kb)


  1. Ackerman F, de Canio SJ, Howarth RB, Sheeran K (2009) Limitations of integrated assessment models of climate change. Clim Change 95(3–4):297–315CrossRefGoogle Scholar
  2. Anthoff D, Tol RSJ (2009) The impact of climate change on the balanced growth equivalent: an application of fund. Environ Resour Econ 43(3):351–367CrossRefGoogle Scholar
  3. Beusen AHW, de Vink PJF, Petersen AC (2011) The dynamic simulation and visualization software MyM. Environ Model Softw 26(2):238–240CrossRefGoogle Scholar
  4. Frame DJ, Stone DA, Stott PA, Allen MR (2006) Alternatives to stabilization scenarios. Geophys Res Lett 33:L14707CrossRefGoogle Scholar
  5. Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler K-G, Schnur R, Strassmann K, Weaver K, Yoshikawa C, Zeng N (2006) Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19(14):3337–3353CrossRefGoogle Scholar
  6. Goodess CM, Hanson C, Hulme M, Osborn TJ (2003) Representing climate and extreme weather events in integrated assessment models: a review of existing methods and options for development. Integr Assess 4(3):145–171CrossRefGoogle Scholar
  7. Gregory JM, Jones CD, Cadule P, Friedlingstein P (2009) Quantifying carbon cycle feedbacks. J Clim 22(19):5232–5250CrossRefGoogle Scholar
  8. Harremoës P, Turner R (2001) Methods for integrated assessment. Reg Environ Change 2(2):57–65Google Scholar
  9. Harrod RF (1948) Towards a dynamic economics. Macmillan, LondonGoogle Scholar
  10. Hoel M, Sterner T (2007) Discounting and relative prices. Clim Change 84(3–4):265–280CrossRefGoogle Scholar
  11. Hof AF, den Elzen MGJ, van Vuuren DP (2008) Analysing the costs and benefits of climate policy: value judgements and scientific uncertainties. Glob Environ Change 18(3):412–424CrossRefGoogle Scholar
  12. Hope C (2005) Integrated assessment models. In: Helm D (ed) Climate change policy. Oxford University Press, OxfordGoogle Scholar
  13. Hope C (2006a) The marginal impact of CO2 from PAGE2002: an integrated assessment model incorporating the IPCC's five reasons for concern. Integr Assess 6(1):19–56Google Scholar
  14. Hope C (2006b) The social cost of carbon: what does it actually depend on? Clim Policy 6(5):565–572CrossRefGoogle Scholar
  15. Hope C (2011) The PAGE09 integrated assessment model: a technical description. Judge Business School Working Paper 4/2011Google Scholar
  16. Howarth RB (2003) Discounting and uncertainty in climate change policy analysis. Land Econ 79(3):369–381CrossRefGoogle Scholar
  17. IMF (2008) Climate change and the global economy. World economic outlook: housing and the business cycle. International Monetary Fund, Washington, pp 133–190Google Scholar
  18. IPCC (ed) (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  19. Johns TC, Royer JF, Höschel I, Huebener H, Roeckner E, Manzini E, May W, Dufresne JL, Otterå OH, van Vuuren DP, Salas y Melia D, Giorgetta MA, Denvil S, Yang S, Fogli PG, Körper J, Tjiputra JF, Stehfest E, Hewitt CD (2011) Climate change under aggressive mitigation: the ENSEMBLES multi-model experiment. Clim Dyn. doi: 10.1007/s00382-011-1005-5
  20. Jungclaus JH, Lorenz SJ, Timmreck C, Reick CH, Brovkin V, Six K, Segschneider J, Giorgetta MA, Crowley TJ, Pongratz J, Krivova NA, Vieira LE, Solanki SK, Klocke D, Botzet M, Esch M, Gayler V, Haak H, Raddatz TJ, Roeckner E, Schnur R, Widmann H, Claussen M, Stevens B, Marotzke J (2010) Climate and carbon-cycle variability over the last millennium. Clim Past Discuss 6(3):1009–1044CrossRefGoogle Scholar
  21. Knutti R, Hegerl GC (2008) The equilibrium sensitivity of the earth's temperature to radiation changes. Nat Geosci 1(11):735–743CrossRefGoogle Scholar
  22. Lowe JA, Hewitt CD, Van Vuuren DP, Johns TC, Stehfest E, Royer J-F, van der Linden PJ (2009) New study for climate modeling, analyses, and scenarios. Eos 90(21):181–188CrossRefGoogle Scholar
  23. Maier-Reimer E, Hasselmann K (1987) Transport and storage of carbon dioxide in the ocean-an inorganic ocean-circulation carbon cycle model. Clim Dyn 2:63–90CrossRefGoogle Scholar
  24. Manne AS, Richels RG (2006) The role of non-CO2 greenhouse gasses and carbon sinks in meeting climate objectives. Energy J (Special Issue #3):393–404Google Scholar
  25. Mastrandrea MD, Schneider SH (2004) Probabilistic integrated assessment of "dangerous" climate change. Science 304(5670):571–575CrossRefGoogle Scholar
  26. Meehl GA, Covey C, McAvaney B, Latif M, Stouffer RJ (2005) Overview of coupled model intercomparison project. Bull Am Meteorol Soc 86(1):89–93CrossRefGoogle Scholar
  27. Meinshausen M, Meinshausen N, Hare W, Raper SCB, Frieler K, Knutti R, Frame DJ, Allen MR (2009) Greenhouse-gas emission targets for limiting global warming to 2°C. Nature 458(7242):1158CrossRefGoogle Scholar
  28. Meinshausen M, Raper SCB, Wigley TML (2011a) Emulating coupled atmosphere–ocean and carbon cycle models with a simpler model, MAGICC6—part 1: model description and calibration. Atmos Chem Phys 11(4):1417–1456CrossRefGoogle Scholar
  29. Meinshausen M, Wigley TML, Raper SCB (2011b) Emulating atmosphere–ocean and carbon cycle models with a simpler model, MAGICC6—part 2: applications. Atmos Chem Phys 11(4):1457–1471CrossRefGoogle Scholar
  30. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747–756CrossRefGoogle Scholar
  31. Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung TY, Kram T, Emilio la Rovere E, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooyen S, Victor N, Dadi Z (2000) Special report on emissions scenarios. Cambridge University Press, CambridgeGoogle Scholar
  32. Nordhaus WD (2007) A review of the Stern review on the economics of climate change. J Econ Lit 45(3):686–702CrossRefGoogle Scholar
  33. Nordhaus WD (2008) A question of balance: weighing the options on global warming policies. Yale University, New HavenGoogle Scholar
  34. Nordhaus WD (2010) Economic aspects of global warming in a post-Copenhagen environment. Proc Natl Acad Sci U S A 107(26):11721–11726CrossRefGoogle Scholar
  35. Nordhaus WD, Boyer J (2000) Warming the world: economic models of global warming. MIT Press, CambridgeGoogle Scholar
  36. Orr JC (2002) Global Ocean Storage of Anthropogenic Carbon (GOSAC). EurOCMIP-2 final report. IPSL/CNRS, France, p 128CrossRefGoogle Scholar
  37. Ramsey FP (1928) A mathematical theory of saving. Econ J 38:543–559CrossRefGoogle Scholar
  38. Schultz PA, Kasting JF (1997) Optimal reductions in CO2 emissions. Energy Policy 25(5):491–500CrossRefGoogle Scholar
  39. Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238–1240CrossRefGoogle Scholar
  40. Smith J, Schnellnhubner H-J, Mirza MQM (2001) Vulnerability to climate change and reasons for concern: a synthesis. In: McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (eds) Climate change 2001: impacts, adaptation, and vulnerability. Cambridge University Press, CambridgeGoogle Scholar
  41. Solow RM (1974) The economics of resources or the resources of economics. Am Econ Rev 64(2):1–14Google Scholar
  42. Stern N (2006) The economics of climate change, the stern review. Cambridge University Press, CambridgeGoogle Scholar
  43. Tol RSJ (2006) Multi-gas emission reduction for climate change policy: an application of FUND. Energy J Special Issue #3:235–250Google Scholar
  44. Tol RSJ (2008) The social cost of carbon: trends, outliers and catastrophes. Economics 2 (2008–25)Google Scholar
  45. Tol RSJ, Downing TE, Kuik OJ, Smith JB (2004) Distributional aspects of climate change impacts. Glob Environ Change 14(3):259–272CrossRefGoogle Scholar
  46. UK Treasury (2003) The green book: appraisal and evaluation in central government. TSO, LondonGoogle Scholar
  47. Van den Bergh JCJM (2010) Safe climate policy is affordable—12 reasons. Clim Change 101(3–4):339–385CrossRefGoogle Scholar
  48. van Vuuren DP, den Elzen MGJ, Lucas PL, Eickhout B, Strengers BJ, van Ruijven B, Wonink S, van Houdt R (2007) Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim Change 81(2):119–159CrossRefGoogle Scholar
  49. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt G, Kram T, Krey V, Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith S, Rose S (2011a) The representative concentration pathways: an overview. Clim Change 109(1):5–31Google Scholar
  50. van Vuuren DP, Lowe J, Stehfest E, Gohar L, Hof AF, Hope C, Warren R, Meinshausen M, Plattner G-K (2011b) How well do integrated assessment models simulate climate change? Clim Change 104(2):255–285CrossRefGoogle Scholar
  51. Warren R, Hope C, Mastrandrea MD, Tol R, Adger N, Lorenzoni I (2006) Spotlighting impacts functions in integrated assessment: research report prepared for the stern review on the economics of climate change. Working paper 91. Tyndall Centre for Climate Change Research, NorwichGoogle Scholar
  52. Warren R, Mastrandrea MD, Hope C, Hof AF (2010) Variation in the climatic response to SRES emissions scenarios in integrated assessment models. Clim Change 102(3):671–685CrossRefGoogle Scholar
  53. Watkiss P, Anthoff D, Downing T, Hepburn C, Hope C, Hunt A, Tol R (2005) The social costs of carbon (SCC) review: methodological approaches for using SCC estimates in policy assessment. Final report. Defra, LondonGoogle Scholar
  54. Weitzman ML (2001) Gamma discounting. Am Econ Rev 91(1):261–271CrossRefGoogle Scholar
  55. Weitzman ML (2007) A review of the stern review on the economics of climate change. J Econ Lit 45(3):703–724CrossRefGoogle Scholar
  56. Weyant J, Davidson O, Dowlatabadi H, Edmonds J, Grubb M, Parson EA, Richels R, Rotmans J, Shukla PR, Tol RSJ, Cline WR, Fankhauser S (1996) Integrated assessment of climate change: an overview and comparison of approaches and results. In: Bruce JP, Lee H, Haites EF (eds) Climate Change 1995: economic and social dimensions. Contribution of Working Group III to the second assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  57. Wise M, Calvin K, Thomson A, Clarke L, Bond-Lamberty B, Sands R, Smith SJ, Janetos A, Edmonds J (2009) Implications of limiting CO2 concentrations for land use and energy. Science 324(5931):1183–1186CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Andries F. Hof
    • 1
    Email author
  • Chris W. Hope
    • 2
  • Jason Lowe
    • 3
  • Michael D. Mastrandrea
    • 4
  • Malte Meinshausen
    • 5
    • 6
  • Detlef P. van Vuuren
    • 1
    • 7
  1. 1.PBL Netherlands Environmental Assessment AgencyBilthovenThe Netherlands
  2. 2.Cambridge Judge Business SchoolUniversity of CambridgeCambridgeUK
  3. 3.Met Office, Hadley CentreReading UniversityReadingUK
  4. 4.Woods Institute for the EnvironmentStanford UniversityStanfordUSA
  5. 5.Potsdam Institute for Climate Impact Research (PIK)PotsdamGermany
  6. 6.School of Earth SciencesUniversity of MelbourneVictoriaAustralia
  7. 7.Department of GeosciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations