Climatic Change

, Volume 113, Issue 2, pp 141–162 | Cite as

The influence of negative emission technologies and technology policies on the optimal climate mitigation portfolio

  • Derek M. Lemoine
  • Sabine Fuss
  • Jana Szolgayova
  • Michael Obersteiner
  • Daniel M. Kammen


Combining policies to remove carbon dioxide (CO2) from the atmosphere with policies to reduce emissions could decrease CO2 concentrations faster than possible via natural processes. We model the optimal selection of a dynamic portfolio of abatement, research and development (R&D), and negative emission policies under an exogenous CO2 constraint and with stochastic technological change. We find that near-term abatement is not sensitive to the availability of R&D policies, but the anticipated availability of negative emission strategies can reduce the near-term abatement optimally undertaken to meet 2°C temperature limits. Further, planning to deploy negative emission technologies shifts optimal R&D funding from “carbon-free” technologies into “emission intensity” technologies. Making negative emission strategies available enables an 80% reduction in the cost of keeping year 2100 CO2 concentrations near their current level. However, negative emission strategies are less important if the possibility of tipping points rules out using late-century net negative emissions to temporarily overshoot the CO2 constraint earlier in the century.


  1. Allen MR, Frame DJ, Huntingford C, Jones CD, Lowe JA, Meinshausen M, Meinshausen N (2009) Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458(7242):1163–1166. doi:10.1038/nature08019 CrossRefGoogle Scholar
  2. Azar C, Lindgren K, Larson E, Möllersten K (2006) Carbon capture and storage from fossil fuels and biomass—costs and potential role in stabilizing the atmosphere. Clim Change 74(1):47–79. doi:10.1007/s10584-005-3484-7 CrossRefGoogle Scholar
  3. Azar C, Lindgren K, Obersteiner M, Riahi K, van Vuuren D, den Elzen K, Möllersten K, Larson E (2010) The feasibility of low CO2 concentration targets and the role of bio-energy with carbon capture and storage (BECCS). Clim Change 100(1):195–202. doi:10.1007/s10584-010-9832-7 CrossRefGoogle Scholar
  4. Baker E, Adu-Bonnah K (2008) Investment in risky R&D programs in the face of climate uncertainty. Energy Econ 30(2):465–486. doi:10.1016/j.eneco.2006.10.003 CrossRefGoogle Scholar
  5. Baker E, Shittu E (2008) Uncertainty and endogenous technical change in climate policy models. Energy Econ 30(6):2817–2828. doi:10.1016/j.eneco.2007.10.001 CrossRefGoogle Scholar
  6. Baker E, Chon H, Keisler J (2009) Advanced solar R&D: combining economic analysis with expert elicitations to inform climate policy. Energy Econ 31(Supplement 1):S37–S49. doi:10.1016/j.eneco.2007.10.008 CrossRefGoogle Scholar
  7. Benson S, Cook P, Anderson J, Bachu S, Nimir HB, Basu B, Bradshaw J, Deguchi G, Gale J, von Goerne G, Heidug W, Holloway S, Kamal R, Keith D, Lloyd P, Rocha P, Senior B, Thomson J, Torp T, Wildenborg T, Wilson M, Zarlenga F, Zhou D (2005) Underground geological storage. In: Metz B, Davidson O, de Coninck H, Loos M, Meyer L (eds) IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 195–276Google Scholar
  8. Blackstock JJ, Long JCS (2010) The politics of geoengineering. Science 327(5965):527. doi:10.1126/science.1183877 CrossRefGoogle Scholar
  9. Blyth W, Bunn D, Kettunen J, Wilson T (2009) Policy interactions, risk and price formation in carbon markets. Energy Policy 37(12):5192–5207. doi:10.1016/j.enpol.2009.07.042 CrossRefGoogle Scholar
  10. Bosetti V, Tavoni M (2009) Uncertain R&D, backstop technology and GHGs stabilization. Energy Econ 31(Supplement 1):S18–S26. doi:10.1016/j.eneco.2008.03.002 CrossRefGoogle Scholar
  11. Bosetti V, Carraro C, Massetti E, Tavoni M (2008) International energy R&D spillovers and the economics of greenhouse gas atmospheric stabilization. Energy Econ 30(6):2912–2929. doi:10.1016/j.eneco.2008.04.008 CrossRefGoogle Scholar
  12. Clarke L, Weyant J, Birky A (2006) On the sources of technological change: Assessing the evidence. Energy Econ 28(5-6):579–595. doi:10.1016/j.eneco.2006.05.004 CrossRefGoogle Scholar
  13. Clarke L, Weyant J, Edmonds J (2008) On the sources of technological change: what do the models assume? Energy Econ 30(2):409–424. doi:10.1016/j.eneco.2006.05.023 CrossRefGoogle Scholar
  14. Clarke L, Edmonds J, Krey V, Richels R, Rose S, Tavoni M (2009) International climate policy architectures: Overview of the EMF 22 international scenarios. Energy Econ 31(Supplement 2):S64–S81. doi:10.1016/j.eneco.2009.10.013 CrossRefGoogle Scholar
  15. Damen K, Faaij A, Turkenburg W (2006) Health, safety and environmental risks of underground CO2 storage—overview of mechanisms and current knowledge. Clim Change 74(1):289–318. doi:10.1007/s10584-005-0425-9 CrossRefGoogle Scholar
  16. Denman K, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias P, Wofsy S, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) Climate change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 500–587Google Scholar
  17. Edenhofer O, Knopf B, Barker T, Baumstark L, Bellevrat E, Chateau B, Criqui P, Isaac M, Kitous A, Kypreos S, Leimbach M, Lessmann K, Magné B, Scrieciu Ş, Turton H, van Vuuren DP (2010) The economics of low stabilization: model comparison of mitigation strategies and costs. Energy J 31:11–48Google Scholar
  18. Fischer C, Newell RG (2008) Environmental and technology policies for climate mitigation. J Environ Econ Manage 55(2):142–162. doi:10.1016/j.jeem.2007.11.001 CrossRefGoogle Scholar
  19. Fisher AC, Narain U (2003) Global warming, endogenous risk, and irreversibility. Environ Resour Econ 25(4):395–416. doi:10.1023/A:1025056530035 CrossRefGoogle Scholar
  20. Fisher BS, Nakićenović N, Alfsen K, Morlot JC, de la Chesnaye F, Hourcade J, Jiang K, Kainuma M, Rovere EL, Matysek A, Rana A, Riahi K, Richels R, Rose S, van Vuuren D, Warren R (2007) Issues related to mitigation in the long term context. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate Change 2007: mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  21. Gerlagh R, Kverndokk S, Rosendahl K (2009) Optimal timing of climate change policy: Interaction between carbon taxes and innovation externalities. Environ Resour Econ 43(3):369–390. doi:10.1007/s10640-009-9271-y CrossRefGoogle Scholar
  22. Goulder LH, Mathai K (2000) Optimal CO2 abatement in the presence of induced technological change. J Environ Econ Manage 39(1):1–38. doi:10.1006/jeem.1999.1089 CrossRefGoogle Scholar
  23. Greaker M, Pade L (2009) Optimal carbon dioxide abatement and technological change: should emission taxes start high in order to spur R&D? Clim Change 96(3):335–355. doi:10.1007/s10584-009-9643-x CrossRefGoogle Scholar
  24. Hart R (2008) The timing of taxes on CO2 emissions when technological change is endogenous. J Environ Econ Manage 55(2):194–212. doi:10.1016/j.jeem.2007.06.004 CrossRefGoogle Scholar
  25. Hastie T, Tibshirani R, Friedman JH (2009) The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer series in statistics, Springer, New YorkGoogle Scholar
  26. Hoogwijk M, Vuuren D, Boeters S, Blok K, Blomen E, Barker T, Chateau J, Grübler A, Masui T, Nabuurs G, Novikova A, Riahi K, du Can SR, Sathaye J, Scrieciu S, Urge-Vorsatz D, Vliet J (2008) Sectoral emission mitigation potentials: comparing bottom-up and top-down approaches. PBL Netherlands Environmental Assessment AgencyGoogle Scholar
  27. Keith DW (2009) Why capture CO2 from the atmosphere? Science 325(5948):1654–1655. doi:10.1126/science.1175680 CrossRefGoogle Scholar
  28. Keith DW, Ha-Duong M, Stolaroff JK (2006) Climate strategy with CO2 capture from the air. Clim Change 74(1-3):17–45. doi:10.1007/s10584-005-9026-x CrossRefGoogle Scholar
  29. Keller K, Bolker BM, Bradford DF (2004) Uncertain climate thresholds and optimal economic growth. J Environ Econ Manage 48(1):723–741. doi:10.1016/j.jeem.2003.10.003 CrossRefGoogle Scholar
  30. Kintisch E (2010) ‘Asilomar 2’ takes small steps toward rules for geoengineering. Science 328(5974):22–23. doi:10.1126/science.328.5974.22 CrossRefGoogle Scholar
  31. Krey V, Riahi K (2009) Implications of delayed participation and technology failure for the feasibility, costs, and likelihood of staying below temperature targets—Greenhouse gas mitigation scenarios for the 21st century. Energy Econ 31(Supplement 2):S94–S106. doi:10.1016/j.eneco.2009.07.001 CrossRefGoogle Scholar
  32. Lehmann J (2007) Bio-energy in the black. Front Ecol Environ 5(7):381–387. doi:10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2 CrossRefGoogle Scholar
  33. Lemoine DM (2010) Climate sensitivity distributions depend on the possibility that models share biases. J Climate 23(16):4395–4415. doi:10.1175/2010JCLI3503.1 CrossRefGoogle Scholar
  34. Lemoine DM, Traeger C (2010) Tipping points and ambiguity in the integrated assessment of climate change. CUDARE Working Paper 1111, University of California, BerkeleyGoogle Scholar
  35. Lenton TM, Vaughan NE (2009) The radiative forcing potential of different climate geoengineering options. Atmos Chem Phys Discuss 9(1):2559–2608CrossRefGoogle Scholar
  36. Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008) Tipping elements in the earth’s climate system. Proc Natl Acad Sci 105(6):1786–1793. doi:10.1073/pnas.0705414105 CrossRefGoogle Scholar
  37. Luckow P, Wise M, Dooley J, Kim S (2010) Large-scale utilization of biomass energy and carbon dioxide capture and storage in the transport and electricity sectors under stringent CO2 concentration limit scenarios. International Journal of Greenhouse Gas Control 4(5):865–877. doi:10.1016/j.ijggc.2010.06.002 CrossRefGoogle Scholar
  38. Matthews HD, Gillett NP, Stott PA, Zickfeld K (2009) The proportionality of global warming to cumulative carbon emissions. Nature 459(7248):829–832. doi:10.1038/nature08047 CrossRefGoogle Scholar
  39. MEF (2009) Declaration of the leaders: The Major Economies Forum on Energy and Climate. L’Aquila, ItalyGoogle Scholar
  40. Meinshausen M, Meinshausen N, Hare W, Raper SCB, Frieler K, Knutti R, Frame DJ, Allen MR (2009) Greenhouse-gas emission targets for limiting global warming to 2°C. Nature 458(7242):1158–1162. doi:10.1038/nature08017 CrossRefGoogle Scholar
  41. Montgomery WD, Smith AE (2007) Price, quantity, and technology strategies for climate change policy. In: Schlesinger ME, Kheshgi HS, Smith J, de la Chesnaye FC, Reilly JM, Wilson T, Kolstad C (eds) Human-Induced Climate Change: An Interdisciplinary Assessment. Cambridge University Press, New York, pp 328–342CrossRefGoogle Scholar
  42. National Research Council (2011) Climate Stabilization Targets: Emissions, Concentrations, and Impacts over Decades to Millennia. The National Academies Press, Washington, DCGoogle Scholar
  43. Nemet GF (2006) Beyond the learning curve: factors influencing cost reductions in photovoltaics. Energy Policy 34(17):3218–3232. doi:10.1016/j.enpol.2005.06.020 CrossRefGoogle Scholar
  44. Obersteiner M, Azar C, Kauppi P, Mollersten K, Moreira J, Nilsson S, Read P, Riahi K, Schlamadinger B, Yamagata Y, Yan J, van Ypersele J (2001) Managing climate risk. Science 294(5543):786b–787. doi:10.1126/science.294.5543.786b CrossRefGoogle Scholar
  45. O’Neill BC, Oppenheimer M (2004) Climate change impacts are sensitive to the concentration stabilization path. Proc Natl Acad Sci U S A 101(47):16411–16416. doi:10.1073/pnas.0405522101 CrossRefGoogle Scholar
  46. Pielke Jr RA (2009) An idealized assessment of the economics of air capture of carbon dioxide in mitigation policy. Environ Sci Policy 12(3):216–225. doi:10.1016/j.envsci.2009.01.002 CrossRefGoogle Scholar
  47. Pindyck RS (2002) Optimal timing problems in environmental economics. J Econ Dyn Control 26(9–10):1677–1697. doi:10.1016/S0165-1889(01)00090-2 CrossRefGoogle Scholar
  48. Pizer WA, Popp D (2008) Endogenizing technological change: matching empirical evidence to modeling needs. Energy Econ 30(6):2754–2770. doi:10.1016/j.eneco.2008.02.006 CrossRefGoogle Scholar
  49. Read P (2009) Reducing CO2 levels—so many ways, so few being taken. Clim Change 97(3-4):449–458. doi:10.1007/s10584-009-9723-y CrossRefGoogle Scholar
  50. Rhodes JS, Keith DW (2005) Engineering economic analysis of biomass IGCC with carbon capture and storage. Biomass and Bioenergy 29(6):440–450. doi:10.1016/j.biombioe.2005.06.007 CrossRefGoogle Scholar
  51. Riahi K, Grübler A, Nakićenović N (2007) Scenarios of long-term socio-economic and environmental development under climate stabilization. Technological Forecasting and Social Change 74(7):887–935. doi:10.1016/j.techfore.2006.05.026 CrossRefGoogle Scholar
  52. Sandén BA, Azar C (2005) Near-term technology policies for long-term climate targets—economy wide versus technology specific approaches. Energy Policy 33(12):1557–1576. doi:10.1016/j.enpol.2004.01.012 CrossRefGoogle Scholar
  53. Smetacek V, Naqvi S (2008) The next generation of iron fertilization experiments in the Southern Ocean. Philos Trans - Royal Soc A Math Phys Eng Sci 366(1882):3947–3967. doi:10.1098/rsta.2008.0144 CrossRefGoogle Scholar
  54. Stephens J, Keith D (2008) Assessing geochemical carbon management. Clim Change 90(3):217–242. doi:10.1007/s10584-008-9440-y CrossRefGoogle Scholar
  55. Stolaroff JK, Keith DW, Lowry GV (2008) Carbon dioxide capture from atmospheric air using sodium hydroxide spray. Environ Sci Technol 42(8):2728–2735. doi:10.1021/es702607w CrossRefGoogle Scholar
  56. Strand SE, Benford G (2009) Ocean sequestration of crop residue carbon: recycling fossil fuel carbon back to deep sediments. Environ Sci Technol 43(4):1000–1007. doi:10.1021/es8015556 CrossRefGoogle Scholar
  57. Strong AL, Cullen JJ, Chisholm SW (2009) Ocean fertilization: science, policy, and commerce. Oceanography 22(3):236–261CrossRefGoogle Scholar
  58. Uddin SN, Barreto L (2007) Biomass-fired cogeneration systems with CO2 capture and storage. Renew Energy 32(6):1006–1019. doi:10.1016/j.renene.2006.04.009 CrossRefGoogle Scholar
  59. UNFCCC (2009) Copenhagen AccordGoogle Scholar
  60. UNFCCC (2011) Compilation of economy-wide emission reduction targets to be implemented by Parties included in Annex I to the Convention: Note by the secretariatGoogle Scholar
  61. van der Zwaan B, Gerlagh R (2009) Economics of geological CO2 storage and leakage. Clim Change 93(3):285–309. doi:10.1007/s10584-009-9558-6 CrossRefGoogle Scholar
  62. van Vuuren D, den Elzen M, Lucas P, Eickhout B, Strengers B, van Ruijven B, Wonink S, van Houdt R (2007) Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim Change 81(2):119–159. doi:10.1007/s10584-006-9172-9 CrossRefGoogle Scholar
  63. van Vuuren DP, Riahi K (2011) The relationship between short-term emissions and long-term concentration targets. Clim Change 104(3–4):793–801. doi:10.1007/s10584-010-0004-6 CrossRefGoogle Scholar
  64. van Vuuren DP, van Vliet J, Stehfest E (2009) Future bio-energy potential under various natural constraints. Energy Policy 37(11):4220–4230. doi:10.1016/j.enpol.2009.05.029 CrossRefGoogle Scholar
  65. van Vuuren DP, Bellevrat E, Kitous A, Isaac M (2010a) Bio-energy use and low stabilization scenarios. Energy J 31:193–221Google Scholar
  66. van Vuuren DP, Stehfest E, den Elzen MG, van Vliet J, Isaac M (2010b) Exploring IMAGE model scenarios that keep greenhouse gas radiative forcing below 3 W/m2 in 2100. Energy Econ 32(5):1105–1120. doi:10.1016/j.eneco.2010.03.001 CrossRefGoogle Scholar
  67. Woodward FI, Bardgett RD, Raven JA, Hetherington AM (2009) Biological approaches to global environment change mitigation and remediation. Curr Biol 19(14):R615–R623. doi:10.1016/j.cub.2009.06.012 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Derek M. Lemoine
    • 2
  • Sabine Fuss
    • 3
  • Jana Szolgayova
    • 3
    • 4
  • Michael Obersteiner
    • 3
  • Daniel M. Kammen
    • 1
  1. 1.Energy and Resources GroupUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of EconomicsUniversity of ArizonaTucsonUSA
  3. 3.Ecosystems Services and Management ProgramInternational Institute for Applied Systems Analysis (IIASA)LaxenburgAustria
  4. 4.Department of Applied Mathematics and StatisticsComenius UniversityBratislavaSlovakia

Personalised recommendations