Climatic Change

, 108:619 | Cite as

Economically consistent long-term scenarios for air pollutant emissions

Letter

Abstract

Pollutant emissions such as aerosols and tropospheric ozone precursors substantially influence climate. While future century-scale scenarios for these emissions have become more realistic through the inclusion of emission controls, they still potentially lack consistency between surface pollutant concentrations and regional levels of affluence. We find that the default method of scenario construction, whereby emissions factors converge to similar values in different regions, does not yield pollution concentrations consistent with historical experience. We demonstrate a methodology combining use of an integrated assessment model and a three-dimensional atmospheric chemical transport model, whereby a reference scenario is constructed by requiring consistent surface pollutant concentrations as a function of regional income over the 21st century. By adjusting air pollutant emission control parameters, we improve consistency between projected PM2.5 and economic income among world regions through time; consistency for ozone is also improved but is more difficult to achieve because of the strong influence of upwind world regions. Reference case pollutant emissions described here were used to construct the RCP4.5 Representative Concentration Pathway climate policy scenario.

Supplementary material

10584_2011_219_MOESM1_ESM.pdf (707 kb)
ESM1(PDF 707 kb)

References

  1. Amann M, Kejun J, Jiming H, Wang S, Xing Z, Wei W, Xiang DY, Hong L, Jia X, Chuying Z, Bertok I, Borken J, Cofala J, Heyes C, Höglund L, Klimont Z, Purohit P, Rafaj P, Schöpp W, Toth G, Wagner F, Winiwarter W (2008) Gains Asia scenarios for cost-effective control of air pollution and greenhouse gases in China (IIASA, Laxenburg, Austria, November 2008)Google Scholar
  2. Burtraw D, Krupnick A, Palmer K, Paul A, Toman M, Bloyd C (2003) Ancillary benefits of reduced air pollution in the US from moderate greenhouse gas mitigation policies in the electricity sector. J Environ Econ Manag 45:650–673CrossRefGoogle Scholar
  3. Carson RT (2010) The environmental kuznets curve: seeking empirical regularity and theoretical structure. Rev Environ Econ Policy 4(1):3–23CrossRefGoogle Scholar
  4. Cifuentes L, Borja-Aburto VH, Gouveia N, Thurston G, Davis DL (2001) Climate change: hidden health benefits of greenhouse gas mitigation. Science 293(5533):1257–1259CrossRefGoogle Scholar
  5. Cofala J, Amann M, Asman W, Bertok I, Heyes C, Hoeglund Isaksson L, Klimont Z, Schoepp W, Wagner F (2010) Integrated assessment of air pollution and greenhouse gases mitigation in Europe. Arch Environ Protect 36(1):29–39Google Scholar
  6. Dentener F, Keating T, Akimoto H (eds) (2010) Hemispheric transport of air pollution. Part A: ozone and particulate matter. Economic Commission For Europe, United Nations, GenevaGoogle Scholar
  7. Eyring V, Isaksen ISA, Berntsen T, Collins WJ, Corbett JJ, Endresen O, Grainger RG, Moldanova J, Schlager H, Stevenson DS (2010) Transport impacts on atmosphere and climate: shipping. Atmos Environ 44(37):4735–4771CrossRefGoogle Scholar
  8. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  9. Ginoux P, Horowitz LW, Ramaswamy V, Geogdzhayev IV, Holben BN, Stenchikov G, Tie X (2006) Evaluation of aerosol distribution and optical depth in the Geophysical Fluid Dynamics Laboratory coupled model CM2.1 for present climate. J Geophys Res 111:D22210CrossRefGoogle Scholar
  10. Granier C, Bessagnet B, Bond TC, D’Angiola A, Denier van der Gon H, Frost GJ, Heil A, Kaiser JW, Kinne S, Zbigniew K, Kloster J, Lamarque JF, Liousse C, Toshihiko M, Meleux F, Mieville A, Ohara T, Raut JC, Riahi K, Schultz M, Smith SJ, Thomson AM, van Aardenne J, van Aardenne G, Van Vuuren D (2011) Evolution of anthropogenic and biomass burning emissions at global and regional scales during the 1980–2010 period. Climatic Change. doi:10.1007/s10584-011-0154-1
  11. Horowitz LW (2006) Past, present, and future concentrations of tropospheric ozone and aerosols: Methodology, ozone evaluation, and sensitivity to aerosol wet removal. J Geophys Res 111:D22211CrossRefGoogle Scholar
  12. Horowitz LW, Walters S, Mauzerall DL, Emmons LK, Rasch PJ, Granier C, Tie XX, Lamarque JF, Schultz MG, Tyndall GS, Orlando JJ, Brasseur GP (2003) A global simulation of tropospheric ozone and related tracers: description and evaluation of MOZART version 2. J Geophys Res 108:4784CrossRefGoogle Scholar
  13. Jacob DJ, Winner DA (2009) Effect of climate change on air quality. Atmos Environ 43(1):51–63CrossRefGoogle Scholar
  14. Kim SH, Edmonds J, Lurz J, Smith SJ, Wise M (2006) The Objects framework for integrated assessment: hybrid modeling of transportation. Energy J (Special Issue #2) 51–80Google Scholar
  15. Kriegler E, O’Neill BC, Hallegatte S, Kram T, Lempert R, Moss RH, Wilbanks TJ (2010) Socio-economic scenario development for climate change analysis. CIRED Working Paper DT/WP No 2010–23, October 2010Google Scholar
  16. Lee DS, Pitari G, Grewe V, Gierens K, Penner JE, Petzold A, Prather MJ, Schumann U, Bais A, Berntsen T, Iachetti D, Lim LL, Sausen R (2010) Transport impacts on atmosphere and climate: aviation. Atmos Environ 44(37):4678–4734CrossRefGoogle Scholar
  17. Moss RH, Edmonds JA, Hibbard K, Carter T, Emori S, Kainuma M, Kram T, Manning M, Meehl J, Mitchell J, Nakicenovic N, Riahi K, Rose S, Smith SJ, Stouffer R, Thomson AM, VanVuuren D, Weyant J, Wilbanks T (2010) Representative concentration pathways: a new approach to scenario development for the IPCC fifth assessment report. Nature 463:747–756CrossRefGoogle Scholar
  18. Nakicenovic N, Swart R (eds) (2001) Emissions scenarios 2000: Special report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  19. Prather M, Gauss M, Berntsen T, Isaksen I, Sundet J, Bey I, Brasseur G, Dentener F, Derwent R, Stevenson D, Grenfell L, Hauglustaine D, Horowitz L, Jacob D, Mickley L, Lawrence M, von Kuhlmann R, Muller JF, Pitari G, Rogers H, Johnson M, Pyle J, Law K, van Weele M, Wild O (2003) Fresh air in the 21st century? Geophys Res Lett 30:1100CrossRefGoogle Scholar
  20. Schoepp W, Amann M, Cofala J, Heyes C, Klimont Z (1999) Integrated assessment of European air pollution emission control strategies. Environ Model Software 14(1):1–9Google Scholar
  21. Smith SJ (2005) Income and pollutant emissions in the ObjECTS MiniCAM model. J Environ Dev 14(1):175–196CrossRefGoogle Scholar
  22. Smith SJ, Wigley TML (2006) Multi-gas forcing stabilization with the miniCAM. Energy J (Special Issue #3) 373–391Google Scholar
  23. Smith SJ, Pitcher H, Wigley TML (2005) Future sulfur dioxide emissions. Clim Chang 73(3):267–318CrossRefGoogle Scholar
  24. Smith SJ, van Aardenne J, Klimont Z, Andres R, Volke AC, Delgado Arias S (2011) Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos Chem Phys 11:1101–1116CrossRefGoogle Scholar
  25. Stern DI (2004) The rise and fall of the environmental Kuznets curve. World Dev 32(8):1419–1439CrossRefGoogle Scholar
  26. Stern DI (2005) Beyond the environmental Kuznets curve: diffusion of sulfur-emissions-abating technology. J Environ Dev 14(1):101–124CrossRefGoogle Scholar
  27. Syri S, Amann M, Capros P, Mantzos L, Cofala J, Klimont Z (2001) Low-CO2 energy pathways and regional air pollution in Europe. Energ Pol 29(11):871–884CrossRefGoogle Scholar
  28. Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, Delgado-Arias S, Bond-Lamberty B, Wise MA, Clarke LE, Edmonds JA (2011) RCP4.5: a pathway for stabilization of radiative forcing by 2100 climatic change. doi:10.1007/s10584-011-0151-4
  29. U.S. Environmental Protection Agency (2009) National Emissions Inventory (NEI) Air Pollutant Emissions Trends Data. (http://www.epa.gov/ttnchie1/trends/, March 30, 2009)
  30. Van Vuuren DP, Lucas P, Hilderink H (2007) Downscaling drivers of global environmental change. Enabling use of global SRES scenarios at the national and grid levels. Glob Environ Chang 17(1):114–130CrossRefGoogle Scholar
  31. Van Vuuren DP, Meinshausen M, Plattner G-K, Joos F, Strassmann KM, Smith SJ, Wigley TML, Raper SCB, Riahi K, de la Chesnaye F, den Elzen M, Fujino J, Jiang K, Nakicenovic N, Paltsev S, Reilly JM (2008) Temperature increase of 21st century mitigation scenarios. Proc Natl Acad Sci 105(40):15258–15262CrossRefGoogle Scholar
  32. Van Vuuren D, Smith SJ, Riahi K (2010) Downscaling drivers of global environmental scenarios. Wiley Interdisciplinary Reviews: Climate Change 1(3):393–404Google Scholar
  33. West JJ, Naik V, Horowitz LW, Fiore AM (2009) Effect of regional precursor emission controls on long-range ozone transport—Part 1: Short.term changes in ozone air quality. Atmos Chem Phys 9:6077–6093CrossRefGoogle Scholar

Copyright information

© U.S. Government 2011

Authors and Affiliations

  1. 1.Joint Global Change Research Institute, Pacific Northwest National Laboratory5825 University Research CourtCollege ParkUSA
  2. 2.Department of Environmental Sciences & EngineeringUniversity of North CarolinaChapel HillUSA

Personalised recommendations