Skip to main content

Vertical structure of recent arctic warming from observed data and reanalysis products

Abstract

Spatiotemporal patterns of recent (1979–2008) air temperature trends are evaluated using three reanalysis datasets and radiosonde data. Our analysis demonstrates large discrepancies between the reanalysis datasets, possibly due to differences in the data assimilation procedures as well as sparseness and inhomogeneity of high-latitude observations. We test the robustness of arctic tropospheric warming based on the ERA-40 dataset. ERA-40 Arctic atmosphere temperatures tend to be closer to the observed ones in terms of root mean square error compared to other reanalysis products used in the article. However, changes in the ERA-40 data assimilation procedure produce unphysical jumps in atmospheric temperatures, which may be the likely reason for the elevated tropospheric warming trend in 1979–2002. NCEP/NCAR Reanalysis data show that the near-surface upward temperature trend over the same period is greater than the tropospheric trend, which is consistent with direct radiosonde observations and inconsistent with ERA-40 results. A change of sign in the winter temperature trend from negative to positive in the late 1980s is documented in the upper troposphere/lower stratosphere with a maximum over the Canadian Arctic, based on radiosonde data. This change from cooling to warming tendency is associated with weakening of the stratospheric polar vortex and shift of its center toward the Siberian coast and possibly can be explained by the changes in the dynamics of the Arctic Oscillation. This temporal pattern is consistent with multi-decadal variations of key arctic climate parameters like, for example, surface air temperature and oceanic freshwater content. Elucidating the mechanisms behind these changes will be critical to understanding the complex nature of high-latitude variability and its impact on global climate change.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  • Alexeev VA (2003) Sensitivity to CO2 doubling of an atmospheric GCM coupled to an oceanic mixed layer: A linear analysis. Clim Dyn 20:775–787

    Google Scholar 

  • Alexeev VA, Langen PL, Bates JR (2005) Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks. Clim Dyn. doi:10.1007/s00382-005-0018-3

  • Beesley JA et al (2000) A comparison of cloud and boundary layer variables in the ECMWF forecast model with observations at Surface Heat Budget of the Arctic Ocean (SHEBA) ice camp. JGR-atmospheres 105(10):12337–12349

    Article  Google Scholar 

  • Bekryaev RV, Polyakov IV, Alexeev VA (2010) Role of polar amplification in long-term surface air temperature variations and modern arctic warming. J Climate 23(14):3888–3906

    Google Scholar 

  • Bengtsson L, Hagemann S, Hodges KI (2004a) Can climate trends be computed from reanalysis data? JGR-atmospheres 109. doi:10.2001/2004JD00

  • Bengtsson L, Hodges KI, Hagemann S (2004b) Sensitivity of the ERA40 reanalysis to the observing system: Determination of the global atmospheric circulation from reduced observations. Tellus A 56:456–471

    Article  Google Scholar 

  • Bitz CM, Fu Q (2008) Arctic warming aloft is dataset dependent. Nature 455:E3–E4

    Article  Google Scholar 

  • Bromwich DH, Wang S-H (2005) Evaluation of the NCEP–NCAR and ECMWF 15- and 40-Yr reanalyses using rawinsonde data from two independent arctic field experiments. Mon Weather Rev 133:3562–3578

    Article  Google Scholar 

  • Bromwich DH, Fogt RL, Hodges KI, Walsh JE (2007) A tropospheric assessment of the ERA-40, NCEP, and JRA-25 global reanalyses in the polar regions. J Geophys Res 112. doi:10.1029/2006JD007859

  • Byrkjedal O, Esau I, Kvamstoe N-G (2008) Sensitivity of simulated wintertime Arctic atmosphere to vertical resolution in the ARPEGE/IFS model. Clim Dyn 30:687–701

    Article  Google Scholar 

  • Chen Y, Francis JA, Miller JR (2002) Surface temperature of the Arctic: Comparison of TOVS satellite retrievals with surface observations. J Climate 15:3698–3708

    Article  Google Scholar 

  • Cohen J, Entekhabi D (1999) Eurasian snow cover variability and Northern Hemisphere climate predictability. Geophys Res Lett 26:345–348

    Article  Google Scholar 

  • Cohen J, Barlow M (2005) The NAO, the AO, and global warming: How closely related? J Climate 18:4498–4513

    Article  Google Scholar 

  • Cohen J, Fletcher C (2007) Improved skill for Northern Hemisphere winter surface temperature predictions based on land-atmosphere fall anomalies. J Climate 20:4118–4132

    Article  Google Scholar 

  • Collins WG (2001) The operational complex quality control of radiosonde heights and temperatures at the national centers for environmental prediction. Part I: Description of the method. J Applied Meteor 40:137–151

    Article  Google Scholar 

  • Flannery BP (1984) Energy-balance models incorporating transport of thermal and latent energy. J Atm Sci 41:414–421

    Article  Google Scholar 

  • Francis JA, Hunter E (2007) Changing fabric of the arctic blanket, Environmental Research Letters, 2, Article 045011

  • Gaffen DJ (1994) Temporal inhomogeneities in radiosonde temperature records. J Geophys Res 99:3667–3676

    Article  Google Scholar 

  • Gaffen DJ (1996) A digitized metadataset of global upper-air station histories, NOAA Technical Memorandum ERL ARL-211

  • Gandin LS (1988) Complex quality control of meteorological observations. Mon Wea Rev 116:1137–1156

    Article  Google Scholar 

  • Gillett N et al (2008) The Arctic and Antarctic: Two faces of climate change. Eos 89:177–178

    Article  Google Scholar 

  • Grant AN, Broennimann S, Haimberger L (2008) Recent Arctic warming structure contested. Nature 455:E2–E3

    Article  Google Scholar 

  • Graversen RG et al (2008) Vertical structure of recent Arctic warming. Nature 451:53–56

    Article  Google Scholar 

  • Hartmann B, Wendler G (2005) On the significance of the 1976 Pacific climate shift in the climatology of Alaska. J Clim 18:4824–4839

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel for Climate Change) (2007) Fourth assessment report. The physical sciences basis. Contribution of working group I to the fourth assessment report of the IPCC, Cambridge University Press, ISBN 978-0-521-88009-1, 996p

  • Johannessen OM et al (2004) Arctic climate change: Observed and modelled temperature and sea-ice variability. Tellus A 56:328–341

    Article  Google Scholar 

  • Jones PD, Moberg A (2003) Hemispheric and large scale surface air temperature variations: An extensive revision and an update to 2001. J Clim 16:206–223

    Article  Google Scholar 

  • Kahl J (1998) Daily Arctic Ocean rawinsonde data from Soviet drifting ice stations. National Snow and Ice Data Center, digital media, Boulder, CO

    Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. BAMS 77:437–471

    Article  Google Scholar 

  • Kanamitsu M et al (2002) NCEP–DOE AMIP-II reanalysis (R-2). BAMS 83:1631–1643

    Article  Google Scholar 

  • Kuzmina S et al (2008) High northern latitude surface air temperature: Comparison of existing data and creation of a new gridded dataset 1900–2000. Tellus A 60:289–304

    Article  Google Scholar 

  • Langen PL, Alexeev VA (2005) Analysis of 2xCO2 sensitivity in an aquaplanet GCM using fluctuation-dissipation theorem, GRL, L23708

  • Langen PL, Alexeev VA (2007) Polar amplification as a preferred response in an aquaplanet GCM. Clim Dyn. doi:10.1007/s00382-006-0221-x

  • Mantua NJ et al (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. BAMS 78:1069–1079

    Article  Google Scholar 

  • Marshall GJ et al (2004) Causes of exceptional atmospheric circulation changes in the Southern Hemisphere. GRL 31:L14205. doi:10.1029/2004GL019952

    Article  Google Scholar 

  • Mesinger F et al (2006) North American regional reanalysis. BAMS 87. doi:10.1175/BAMS-87-3-343

  • Nakamura N, Oort AH (1988) Atmospheric heat budgets of the polar regions. J Geophys Res 93:9510–9524

    Article  Google Scholar 

  • Onogi K, Tsutsui J, Koide H, Sakamoto M, Kobayashi S, Hatsushika H, Matsumoto T, Yamazaki N, Kamahori H, Takahashi K, Kadokura S, Wada K, Kato K, Oyama R, Ose T, Mannoji N, Taira R (2007) The JRA-25 Reanalysis. J Meteor Soc Japan 85:369–432

    Article  Google Scholar 

  • Overland JE, Guest PS (1992) The Arctic snow and air-temperature budget over sea ice during winter. JGR Oceans 96:4651–4662

    Article  Google Scholar 

  • Overland JE, Turet P (1994) Variability of the atmospheric energy flux across 70°N computed from the GFDL data set. In: The Polar Oceans and Their Role in Shaping the Global Environment, Nansen Centennial Volume, Geophysical Monograph 85, Johannessen, O., R. Muench, and J. Overland (eds.), AGU pp 313–325

  • Overpeck J et al (1997) Arctic environmental change of the last four centuries. Science 278:1251–1256

    Article  Google Scholar 

  • Polyakov IV et al (2003) Observationally based assessment of polar amplification of global warming. GRL 29:1878. doi:1029/2001GL011111

    Article  Google Scholar 

  • Polyakov IV, Alexeev VA, Belchansky GI et al (2008) Arctic Ocean freshwater changes over the past 100 years and their causes. J of Climate 21:364–384

    Article  Google Scholar 

  • Ramaswamy V et al (2006) Anthropogenic and natural influences in the evolution of lower stratospheric cooling. Science 311:1138–1141

    Article  Google Scholar 

  • Rigor IG, Colony RL, Martin S (2000) Variations in surface air temperature observations in the Arctic, 1979–97. J Clim 13:896–914

    Article  Google Scholar 

  • Rinke A et al (2006) Evaluation of an ensemble of Arctic regional climate models: Spatial patterns and height profiles. Clim Dyn. doi:10.1007/s00382-005-0095-3

  • Rodgers KB et al (2003) A tropical mechanism for Northern Hemisphere deglaciation. Geochem Geophys Geosys 4(5):1046. doi:10.1029/1003GC000508

    Article  Google Scholar 

  • Schneider EK, Lindzen RS, Kirtman BP (1997) A tropical influence on the global climate. J Atmos Sci 54:1349–1358

    Article  Google Scholar 

  • Schwartz BE, Doswell CA III (1991) North American rawinsonde observations: Problems, concerns, and a call to action. Bull Amer Meteor Soc 72:1885–1896

    Article  Google Scholar 

  • Serreze MC et al (2000) Observational evidence of recent change in the northern high latitude environment. Clim Chang 46:159–207

    Article  Google Scholar 

  • Serreze MC, Francis JA (2006) The Arctic Amplification debate. Clim Change. doi:10.1007/s10584-005-9017-y

  • Serreze MC et al (2009) The emergence of the surface-based Arctic amplification. The Cryosphere Discussions 2:601–622

    Article  Google Scholar 

  • Simmons AJ et al. (2004) Comparison of trends and low-frequency variability in CRU, ERA-40, and NCEP/NCAR analyses of surface air temperature, J. Geophys, Res., 109, D24115, doi:10.1029/2004JD005306

  • Sverdrup HO (1933) The Norwegian North Polar expedition with the Maud, Vol. II, Meteorology, Geophysical Institute Bergen, pp 331

  • Thompson DWJ, Wallace JM (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300

    Article  Google Scholar 

  • Thorne PW et al (2005) Revisiting radiosonde upper air temperatures from 1958 to 2002. J Geophys Res 110:D18105. doi:10.1029/2004JD005753

    Article  Google Scholar 

  • Thorne PW (2008) Arctic tropospheric warming amplification? Nature 455:E1–E2

    Article  Google Scholar 

  • Tjernstroem M (2005) The summer Arctic boundary layer during the Arctic Ocean Experiment 2001 (AOE-2001). Boundary-Layer Meteorology 117:5–36

    Article  Google Scholar 

  • Tjernstroem M et al (2005) Modeling the Arctic Boundary Layer: An evaluation of six ARC­MIP regional-scale models with data from the SHEBA project. Boundary-Layer Meteorology 117:337–381

    Article  Google Scholar 

  • Trenberth KE et al (2001) Quality of reanalyses in the Tropics. J Clim 14:1499–1510

    Article  Google Scholar 

  • Turner J, Overland JE, Walsh JE (2007) An Arctic and Antarctic perspective on recent climate change. Int J of Climatology 27:277–293

    Article  Google Scholar 

  • Uppala SM et al (2005) The ERA-40 reanalysis, Quarterly. J of the Royal Met Society 61:3493–3512

    Google Scholar 

  • Uttal T et al (2002) Surface heat budget of the Arctic Ocean. BAMS 82:255–275

    Article  Google Scholar 

  • Wigley TML (2006) Statistical issues regarding trends, Appendix A from the US Climate change science program report “Temperature trends in the lower atmosphere: steps for understanding and reconciling differences” (http://www.climatescience.gov/Library/sap/sap1-1/finalreport/). Direct link to Appendix A from the report: http://www.climatescience.gov/Library/sap/sap1-1/finalreport/sap1-1-final-appA.pdf

Download references

Acknowledgements

The study was supported by the National Science Foundation grants ARC 0909525, ARC 0652838 (VA, IP), National Oceanographic and Atmospheric Administration, Japan Agency for Marine-Earth Science and Technology (VA, IP), and the University of Alaska Fairbanks (SB). IE and SS were supported by the Norwegian Research Council projects PAACSIZ 178908/S30 “Planetary Boundary Layer Feedbacks Affecting the Polar Amplification of Arctic Climate Change in Seasonal Ice Zone”, POCAHONTAS 178345/S30 “Polar Climate and Heat Impact on the Arctic Shelves”, and NORCLIM 178245/S30 “Norwegian Climate Assessment”. ECMWF ERA-40 data used in this project were provided by ECMWF and obtained from the ECMWF data server. NCEP data used in this project were provided by NCEP and obtained from the NCEP data server. The JRA-25 data were obtained from the JRA-25 website: http://jra.kishou.go.jp/JRA-25/index_en.html. The authors thank David Bromwich for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir A. Alexeev.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alexeev, V.A., Esau, I., Polyakov, I.V. et al. Vertical structure of recent arctic warming from observed data and reanalysis products. Climatic Change 111, 215–239 (2012). https://doi.org/10.1007/s10584-011-0192-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-011-0192-8

Keywords

  • Pacific Decadal Oscillation
  • Lower Stratosphere
  • Reanalysis Dataset
  • Reanalysis Product
  • Radiosonde Data