Climatic Change

, Volume 114, Issue 1, pp 79–99 | Cite as

Time to act now? Assessing the costs of delaying climate measures and benefits of early action

  • Michael Jakob
  • Gunnar Luderer
  • Jan Steckel
  • Massimo Tavoni
  • Stephanie Monjon
Article

Abstract

This paper compares the results of the three state of the art climate-energy-economy models IMACLIM-R, ReMIND-R, and WITCH to assess the costs of climate change mitigation in scenarios in which the implementation of a global climate agreement is delayed or major emitters decide to participate in the agreement at a later stage only. We find that for stabilizing atmospheric GHG concentrations at 450 ppm CO2-only, postponing a global agreement to 2020 raises global mitigation costs by at least about half and a delay to 2030 renders ambitious climate targets infeasible to achieve. In the standard policy scenario—in which allocation of emission permits is aimed at equal per-capita levels in the year 2050—regions with above average emissions (such as the EU and the US alongside the rest of Annex-I countries) incur lower mitigation costs by taking early action, even if mitigation efforts in the rest of the world experience a delay. However, regions with low per-capita emissions which are net exporters of emission permits (such as India) can possibly benefit from higher future carbon prices resulting from a delay. We illustrate the economic mechanism behind these observations and analyze how (1) lock-in of carbon intensive infrastructure, (2) differences in global carbon prices, and (3) changes in reduction commitments resulting from delayed action influence mitigation costs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beccherle J, Tirole J (2010) Regional initiatives and the cost of delaying binding climate change agreements, mimeoGoogle Scholar
  2. Bosetti V, Carraro C, Galeotti M, Massetti E, Tavoni M (2006) A world induced technical change hybrid model. Energy J 27(Special Issue 2):13–38Google Scholar
  3. Bosetti V, Carraro C, Galeotti M, Massetti E, Tavoni M (2007) The WITCH model: structure, baseline and solution. FEEM Working Paper N. 10.2007, MilanGoogle Scholar
  4. Bosetti V, Carraro C, Sgobbi A, Tavoni M (2009) Delayed action and uncertain targets. How much will climate policy cost? Clim Change 96:299–312CrossRefGoogle Scholar
  5. Clarke L, Edmonds J, Krey V, Richels R, Rose S, Tavoni M (2009) International climate policy architectures: overview of the EMF 22 International Scenarios. Energy Econ 31(Supplement 2):S64–S81CrossRefGoogle Scholar
  6. Davis SJ, Caldeira K, Matthews HD (2010) Future CO2 emissions and climate change from existing energy infrastructure. Science 10(5997):1330–1333CrossRefGoogle Scholar
  7. Edenhofer O, Carraro C, Koehler J, Grubb M (eds) (2006) Endogenous technological change and the economics of atmospheric stabilisation. A special issue of the energy journal, vol 27Google Scholar
  8. Edmonds J, Clarke L, Lurz J, Wise M (2008) Stabilizing CO2 concentrations with incomplete international cooperation. Climate Policy 8:355–376CrossRefGoogle Scholar
  9. Fisher BS, Nakicenovic N, Alfsen K, Corfee Morlot J, de la Chesnaye F, Hourcade J-C, Jiang K, Kainuma M, La Rovere E, Matysek A, Rana A, Riahi K, Richels R, Rose S, van Vuuren D, Warren R (2007) Issues related to mitigation in the long term context. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Inter-governmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  10. Flachsland C, Marschinski R, Edenhofer O (2009) Global trading versus linking. Architectures for international emissions trading. Energy Policy 37:1637–1647CrossRefGoogle Scholar
  11. Ha-Duong M, Grubb MJ, Hourcade J-C (1997) Influence of socioeconomic inertia and uncertainty on optimal CO2-emission abatement. Nature 390(6657):270–273CrossRefGoogle Scholar
  12. Harstad B (2009) The dynamics of climate agreements. Harvard Project on International Climate Agreements Discussion Paper 09-28Google Scholar
  13. Jakob M, Bosetti V, Waisman H, De Cian E, Steckel J, Leimbach M, Baumstark L (2009a) The RECIPE reference scenarios. RECIPE Backgound Paper. http://www.pik-potsdam.de/members/jakob/publications/recipe-baseline-scenarios
  14. Jakob M, Waisman H, Bosetti V, De Cian E, Leimbach M, Baumstark L, Luderer G (2009b) Description of the RECIPE models. RECIPE Backgound Paper. http://www.pik-potsdam.de/members/jakob/publications/recipe-model-descriptions
  15. Keppo I, Rao S (2007) International climate regimes: effects of delayed participation. Technol Forecast Soc Change 74(7):962–979CrossRefGoogle Scholar
  16. Knopf B, Edenhofer O, Flachsland C, Kok MTJ, Lotze-Campen H, Luderer G, Popp A, van Vuuren DP (2010) Managing the low-carbon transition – from model results to policies. Energ J 31(Special Issue 1):223–245Google Scholar
  17. Leimbach M, Bauer N, Baumstark L, Edenhofer O (2009) Mitigation costs in a globalized world: climate policy analysis with ReMIND-R. Environ Model Assess 15:155–173CrossRefGoogle Scholar
  18. Luderer G, Bosetti V, Jakob M, Leimbach M, Steckel J, Waisman H, Edenhofer O (2011a) The economics of decarbonizing the energy system - results and insights from the RECIPE model intercomparison. Clim Change. doi:10.1007/s10584-011-0105-x Google Scholar
  19. Luderer G, DeCian E, Hourcade J-Ch, Leimbach M, Edenhofer O (2011b) The regional distribution of mitigation costs—a tale of scarcity rents. Clim Change (this issue)Google Scholar
  20. Meinhausen M, Meinshausen N, Hare W, Raper S, Frieler K, Knutti R, Frame D, Allen M (2009) Greenhouse-gas emission targets for limiting global warming to 2°C. Nature 458:1158–1163CrossRefGoogle Scholar
  21. Meyer A (2004) Briefing: contraction and convergence. Engineering Sustainability 157(Issue 4):189–192CrossRefGoogle Scholar
  22. Mignone B, Socolow R, Sarmiento J, Oppenheimer M (2008) Atmospheric stabilization and the timing of carbon mitigation. Clim Change 88(3):251–265CrossRefGoogle Scholar
  23. Nordhaus WD (1992) An optimal transition path for controlling greenhouse gases. Science 258:1315–1319CrossRefGoogle Scholar
  24. Nordhaus WD, Yang Z (1996) A regional dynamic general-equilibrium model of alternative climate-change strategies. Am Econ Rev 86(4):741–765Google Scholar
  25. Richels R, Rutherford T, Blanford G, Clarke L (2008) Managing the transition to climate stabilization. Climate Policy 7(5):409–428CrossRefGoogle Scholar
  26. Sassi O, Crassous R, Hourcade J-C, Gitz V, Waisman H, Guivarch C (2010) Imaclim-R: a modelling framework to simulate sustainable development pathways. Int J Global Environmental Issues 10(1/2):5–24CrossRefGoogle Scholar
  27. Stern N (2006) The economics of climate change. The Stern Review. Cambridge University Press, New YorkGoogle Scholar
  28. UNFCCC (2009) Decision -/CP.15. Available online at http://unfccc.int/files/meetings/cop_15/application/pdf/cop15_cph_auv.pdf
  29. van Vliet J, den Elzen MGJ, van Vuuren DP (2009) Meeting radiative forcing targets under delayed participation. Energy Econ 31:152–162CrossRefGoogle Scholar
  30. Wigley T, Richels R, Edmonds J (1996) Economic and environmental choices in the stabilization of atmospheric CO2 concentrations. Nature 379(6562):240–243CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Michael Jakob
    • 1
  • Gunnar Luderer
    • 1
  • Jan Steckel
    • 1
  • Massimo Tavoni
    • 2
  • Stephanie Monjon
    • 3
  1. 1.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  2. 2.Euro-Mediterranean Centre for Climate ChangeVeniceItaly
  3. 3.Centre International de Recherche sur l’Environnement et le DéveloppementParisFrance

Personalised recommendations