Abstract
We evaluate the greenhouse gas footprint of natural gas obtained by high-volume hydraulic fracturing from shale formations, focusing on methane emissions. Natural gas is composed largely of methane, and 3.6% to 7.9% of the methane from shale-gas production escapes to the atmosphere in venting and leaks over the life-time of a well. These methane emissions are at least 30% more than and perhaps more than twice as great as those from conventional gas. The higher emissions from shale gas occur at the time wells are hydraulically fractured—as methane escapes from flow-back return fluids—and during drill out following the fracturing. Methane is a powerful greenhouse gas, with a global warming potential that is far greater than that of carbon dioxide, particularly over the time horizon of the first few decades following emission. Methane contributes substantially to the greenhouse gas footprint of shale gas on shorter time scales, dominating it on a 20-year time horizon. The footprint for shale gas is greater than that for conventional gas or oil when viewed on any time horizon, but particularly so over 20 years. Compared to coal, the footprint of shale gas is at least 20% greater and perhaps more than twice as great on the 20-year horizon and is comparable when compared over 100 years.
References
Armendariz A (2009) Emissions from natural gas production in the Barnett shale area and opportunities for cost-effective improvements. Report prepared for Environmental Defense Fund, Austin TX
Bracken K (2008) Reduced emission completions in DJ basin and natural buttes. Presentation given at EPA/GasSTAR Producers Technology Transfer Workshop. Rock Springs Wyoming, 1 May 2008. http://www.epa.gov/gasstar/documents/workshops/2008-tech-transfer/rocksprings5.pdf
Chambers AK (2004) Optical measurement technology for fugitive emissions from upstream oil and gas facilities. Report prepared for Petroleum Technology Alliance Canada by Carbon and Energy Management, Alberta Research Council, Edmonton, Alberta
Cicerone RJ, Oremland R (1988) Biogeochemical aspects of atmospheric methane. Global Biogeochem. Cycles 2:299–327
Council of Scientific Society Presidents (2010) Letter from the council to President Obama and senior administration officials, dated May 4, 2010. Council of Scientific Society Presidents, 1155 16th Avenue NW, Washington, DC 20036. Available at http://www.eeb.cornell.edu/howarth/CCSP%20letter%20on%20energy%20&%20environment.pdf
Crutzen PJ (1987) Role of the tropics in atmospheric chemistry. In: Dickinson R (ed) Geophysiology of Amazonia. Wiley, NY, pp 107–129
Eckhardt M, Knowles B, Maker E, Stork P (2009) IHS U.S. Industry Highlights. (IHS) Houston, TX, Feb–Mar 2009. http://www.gecionline.com/2009-prt-7-final-reviews
EIA (2010a) Annual energy outlook 2011 early release overview. DOE/EIA-0383ER(2011). Energy Information Agency, U.S. Department of Energy. http://www.eia.gov/forecasts/aeo/pdf/0383er(2011).pdf. Accessed 3 January 2011
EIA (2010b) Natural gas navigator. Natural gas gross withdrawals and production. http://www.eia.gov/dnav/ng/ng_prod_sum_dcu_NUS_m.htm
EPA (2004) Green completions. Natural Gas STAR Producer’s Technology Transfer Workshop, 21 September 2004. http://epa.gov/gasstar/workshops/techtransfer/2004/houston-02.html
EPA (2006) Lessons learned: options for reducing methane emissions from pneumatic devices in the natural gas industry. U.S. EPA/ Gas STAR. http://www.epa.gov/gasstar/documents/ll_pneumatics.pdf
EPA (2007) Reducing methane emissions during completion operations. Natural Gas STAR Producer’s Technology Transfer Workshop, 11 September 2007. http://epa.gov/gasstar/documents/workshops/glenwood-2007/04_recs.pdf
EPA (2010) Greenhouse gas emissions reporting from the petroleum and natural gas industry. Background Technical Support Document. http://www.epa.gov/climatechange/emissions/downloads10/Subpart-W_TSD.pdf. Accessed 3 January 2011
Fernandez R, Petrusak R, Robinson D, Zavadil D (2005) Cost-Effective methane emissions reductions for small and midsize natural gas producers. Reprinted from the June 2005 issue of Journal of Petroleum Technology. http://www.icfi.com/Markets/Environment/doc_files/methane-emissions.pdf
GAO (2010) Federal oil and gas leases: opportunities exist to capture vented and flared natural gas, which would increase royalty payments and reduce greenhouse gases. GAO-11–34 U.S. General Accountability Office Washington DC. http://www.gao.gov/new.items/d1134.pdf
Harrison MR, Shires TM, Wessels JK, Cowgill RM (1996) Methane emissions from the natural gas industry. Executive summary, vol 1. EPA-600/R-96-080a. U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC
Hayhoe K, Kheshgi HS, Jain AK, Wuebbles DJ (2002) Substitution of natural gas for coal: climatic effects of utility sector emissions. Climatic Change 54:107–139
Henke D (2010) Encana, USA division overview. Encana Natural Gas, investors presentation. http://www.encana.com/investors/presentations/investorday/pdfs/usa-division-overview.pdf
Intergovernmental Panel on Climate Change (1995) IPCC second assessment. Climate Change, 1995. http://www.ipcc.ch/pdf/climate-changes-1995/ipcc-2nd-assessment/2nd-assessment-en.pdf
Intergovernmental Panel on Climate Change (2007) IPCC fourth assessment report (AR4). Working Group 1, The Physical Science Basis. http://www.ipcc.ch/publications_and_data/ar4/wg1/en/contents.html
Jamarillo P, Griffin WM, Mathews HS (2007) Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation. Environ Sci Technol 41:6290–6296
Kirchgessner DA, Lott RA, Cowgill RM, Harrison MR, Shires TM (1997) Estimate of methane emissions from the US natural gas industry. Chemosphere 35: 1365–1390
Kruuskraa VA (2004) Tight gas sands development—How to dramatically improve recovery efficiency. GasTIPS, Winter 2004. http://media.godashboard.com/gti/4ReportsPubs/4_7GasTips/Winter04/TightGasSandsDEvelopment-HowToDramaticallyImproveRecoveryEfficiency.pdf
Lassey KR, Lowe DC, Smith AM (2007) The atmospheric cycling of radiomethane and the “fossil fraction” of the methane source. Atmos Chem Phys 7:2141–2149
Lelieveld J, Lechtenbohmer S, Assonov SS, Brenninkmeijer CAM, Dinest C, Fischedick M, Hanke T (2005) Low methane leakage from gas pipelines. Nature 434:841–842
Liu AE (2008) Overview: pipeline accounting and leak detection by mass balance, theory and hardware implementation. Quantum Dynamics, Woodland Hills. Available at http://www.pstrust.org/library/docs/massbalance_ld.pdf
National Research Council (2009) Hidden costs of energy: unpriced consequences of energy production and use. National Academy of Sciences Press, Washington
New York Department of Environmental Conservation (2009) Draft supplemental generic environmental impact statement on the oil, gas and solution mining regulatory program. http://www.dec.ny.gov/energy/58440.html
Nisbet EG, Manning MR, Lowry D, Lassey KR (2000) Methane and the framework convention on climate change, A61F-10, Eos Trans. AGU 81(48), Fall Meet. Suppl
Pacala S, Socolow R (2004) Stablization wedges: solving the climate problem for the next 50 years with current technologies. Science 305:968–972
Percival P (2010) Update on “lost and unaccounted for” natural gas in Texas. Basin Oil and Gas. Issue 32. http://fwbog.com/index.php?page=article&article=248
Reshetnikov AI, Paramonova NN, Shashkov AA (2000) An evaluation of historical methane emissions from the Soviet gas industry. JGR 105:3517–3529
Revkin A, Krauss C (2009) By degrees: curbing emissions by sealing gas leaks. New York Times, 14 October 2009. Available at http://www.nytimes.com/2009/10/15/business/energy-environment/15degrees.html
Samuels J (2010) Emission reduction strategies in the greater natural buttes. Anadarko Petroleum Corporation. EPA Gas STAR, Producers Technology Transfer Workshop Vernal, Utah, 23 March 2010. http://www.epa.gov/gasstar/documents/workshops/vernal-2010/03_anadarko.pdf
Santoro R, Howarth RW, Ingraffea T (2011) Life cycle greenhouse gas emissions inventory of Marcellus shale gas. Technical report of the Agriculture, Energy, & Environment Program, Cornell University, Ithaca, NY. To be archived and made available on-line
Shindell DT, Faluvegi G, Koch DM, Schmidt GA, Unger N, Bauer SE (2009) Improved attribution of climate forcing to emissions. Science 326:716–718
Shires TM, Loughran, CJ, Jones S, Hopkins E (2009) Compendium of greenhouse gas emissions methodologies for the oil and natural gas industry. Prepared by URS Corporation for the American Petroleum Institute (API). API, Washington DC
Wood R, Gilbert P, Sharmina M, Anderson K, Fottitt A, Glynn S, Nicholls F (2011) Shale gas: a provisional assessment of climate change and environmental impacts. Tyndall Center, University of Manchester, Manchester, England. http://www.tyndall.ac.uk/sites/default/files/tyndall-coop_shale_gas_report_final.pdf
Author information
Authors and Affiliations
Corresponding author
Electronic Supplementary Material
Below is the link to the electronic supplementary material.
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Howarth, R.W., Santoro, R. & Ingraffea, A. Methane and the greenhouse-gas footprint of natural gas from shale formations. Climatic Change 106, 679–690 (2011). https://doi.org/10.1007/s10584-011-0061-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10584-011-0061-5
Keywords
- Methane
- Greenhouse gases
- Global warming
- Natural gas
- Shale gas
- Unconventional gas
- Fugitive emissions
- Lifecycle analysis
- LCA
- Bridge fuel
- Transitional fuel
- Global warming potential
- GWP