Skip to main content

Advertisement

Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Climatic Change
  3. Article

Exploring high-end scenarios for local sea level rise to develop flood protection strategies for a low-lying delta—the Netherlands as an example

  • Open access
  • Published: 24 February 2011
  • Volume 109, pages 617–645, (2011)
  • Cite this article
Download PDF

You have full access to this open access article

Climatic Change Aims and scope Submit manuscript
Exploring high-end scenarios for local sea level rise to develop flood protection strategies for a low-lying delta—the Netherlands as an example
Download PDF
  • Caroline A. Katsman1,
  • A. Sterl2,
  • J. J. Beersma2,
  • H. W. van den Brink3,
  • J. A. Church4,
  • W. Hazeleger2,
  • R. E. Kopp5,
  • D. Kroon6,7,
  • J. Kwadijk8,
  • R. Lammersen9,
  • J. Lowe10,
  • M. Oppenheimer5,
  • H. -P. Plag11,
  • J. Ridley10,
  • H. von Storch12,
  • D. G. Vaughan13,
  • P. Vellinga14,
  • L. L. A. Vermeersen15,
  • R. S. W. van de Wal16 &
  • …
  • R. Weisse12 
  • 4915 Accesses

  • 143 Citations

  • 30 Altmetric

  • 1 Mention

  • Explore all metrics

Abstract

Sea level rise, especially combined with possible changes in storm surges and increased river discharge resulting from climate change, poses a major threat in low-lying river deltas. In this study we focus on a specific example of such a delta: the Netherlands. To evaluate whether the country’s flood protection strategy is capable of coping with future climate conditions, an assessment of low-probability/high-impact scenarios is conducted, focusing mainly on sea level rise. We develop a plausible high-end scenario of 0.55 to 1.15 m global mean sea level rise, and 0.40 to 1.05 m rise on the coast of the Netherlands by 2100 (excluding land subsidence), and more than three times these local values by 2200. Together with projections for changes in storm surge height and peak river discharge, these scenarios depict a complex, enhanced flood risk for the Dutch delta.

Article PDF

Download to read the full article text

Similar content being viewed by others

The timing of decreasing coastal flood protection due to sea-level rise

Article 23 March 2023

What are the implications of sea-level rise for a 1.5, 2 and 3 °C rise in global mean temperatures in the Ganges-Brahmaputra-Meghna and other vulnerable deltas?

Article Open access 16 March 2018

Characterizing the deep uncertainties surrounding coastal flood hazard projections: A case study for Norfolk, VA

Article Open access 06 August 2019
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Alley RB, Fahnestock M, Joughin I (2008) Understanding glacier flow in changing times. Science 322:1061–1062

    Article  Google Scholar 

  • Allison I, Alley RB, Fricker HA, Thomas RH, Warner R (2009) Ice sheet mass balance and sea level. Antarct Sci 21. doi:10.1017/S0954102009990,137

    Google Scholar 

  • Antonov JI, Levitus S, Boyer TP (2002) Steric sea level variations 1957-1994: importance of salinity. J Geophys Res 107. doi:10.1029/2001JC000,964

    Google Scholar 

  • Bamber JL, Riva REM, Vermeersen BLA, LeBrocq AM (2009) Reassessment of the potential sea-level rise from a collapse of the West Antarctic ice sheet. Science 324:901–903. doi:10.1126/science.1169335

    Article  Google Scholar 

  • Beersma JJ, Kwadijk J, Lammersen R (2008) River Rhine discharge. In: Exploring high-end climate change scenarios for flood protection of the Netherlands. KNMI/Alterra, The Netherlands, pp 99–142. Available from http://www.knmi.nl/bibliotheek/knmipubWR/WR2009-05.pdf

  • Bindoff N, Willebrand J, Artale V, Cazenave A, Gregory J, Gulev S, Hanawa K, Le Qu C, Levitus S, Nojiri Y, Shum CK, Talley LD, Unnikrishnan A (2007) Observations: oceanic climate change and sea level. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Mille HL (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Cazenave A, Nerem RS (2004) Present-day sea-level change: observations and causes. Rev Geophys 42:RG3001. doi:10.1029/2003RG000139

    Article  Google Scholar 

  • Cazenave A, Dominh K, Guinehut S, Berthier E, Llovel W, Ramilien G, Ablain M, Larnicol G (2009) Sea level budget over 2003–2008. A reevaluation from GRACE space gravimetry, satellite altimetry and ARGO. Glob Planet Change 65:83–88

    Article  Google Scholar 

  • Chen JL, Wilson CR, Blankenship DD, Tapley BD (2006) Antarctic mass rates from GRACE. Geophys Res Lett 33:L11,502. doi:10.1029/2006GL026369

    Google Scholar 

  • Clark J, Primus JA (1988) Sea level change resulting from future retreat of ice sheets: an effect of CO2 warming of the climate. In: Tooley MJ, Shennan I (eds) Sea level changes. Basil Blackwell Publ., Intitute of British Geographers Special Publication, pp 356–370

    Google Scholar 

  • Clark PU, Huybers P (2009) Global change: interglacial and future sea level. Nature 462:856–857. doi:10.1038/462856a

    Article  Google Scholar 

  • Cook AJ, Fox AJ, Vaughan DG, Ferrigno DG (2005) Retreating Glacier fronts on the Antarctic Peninsula over the past half-century. Science 308:541–544

    Article  Google Scholar 

  • Davis CH, Yonghong L, McConnell JR, Frey MM, Hanna E (2005) Snowfall-driven growth in East Antarctic ice sheet mitigates recent sea-level rise. Science 308:1898–1901. doi:10.1126/science.1110662

    Article  Google Scholar 

  • Deltacommissie (2008) Working together with water: a living land builds for its future. Available from www.deltacommissie.com/doc/deltareport_full.pdf

  • Duplessy JC, Roche DM, Kageyama M (2007) The deep ocean during the last interglacial period. Science 316:89–91. doi:10.1126/science.1138582

    Article  Google Scholar 

  • Dyurgerov MB, Meier MF (2005) Glaciers and the changing earth system: a 2004 snapshot. Occasional Paper 58, University of Colorado, Institute of Arctic and Alpine Research. Available from http://instaar.colorado.edu/other/occ_papers.htm

  • Farrell WE, Clark JA (1976) On postglacial sea level. Geophys J Int 46:647–667. doi:10.1111/j.1365-246X.1976.tb01252.x

    Google Scholar 

  • Grinsted A, Moore JC, Jevrejeva S (2009) Reconstructing sea level from paleo and projected temperatures 200 to 2100 AD. Clim Dyn. doi:10.1007/s00382–008–0507–2

    Google Scholar 

  • Helsen MM, van den Broeke MR, van de Wal RSW, van de Berg WJ, van Meijgaard E, Davis CH, Li Y, Goodwin I (2008) Elevation changes in Antarctica mainly determined by accumulation variability. Science 320:1626–1629. doi:10.1126/science.1153894

    Article  Google Scholar 

  • Holgate S, Jevrejeva S, Woodworth P, Brewer S (2007) Comment on “A Semi-Empirical Approach to Projecting Future Sea level Rise”. Science 317. doi:10.1126/science.1140942

    Google Scholar 

  • Holland DM, Thomas RH, de Young B, Ribergaard MH, Lyberth B (2008) Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters. Nat Geosci 1:659–664. doi:10.1038/ngeo316

    Article  Google Scholar 

  • Houghton JT, Meira Filho LG, Callender BA, Harris N, Kattenberg A, Maskell K (eds) (1995) Climate change 1995: the science of climate change. Contribution of working group 1 to the second assessment report of the intergovernmental panel on climate change. Cambridge University Press, UK

    Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) (2001) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, 881 pp

  • Howat IM, Joughin I, Scambos TA (2007) Rapid Changes in Ice Discharge from Greenland Outlet Glaciers. Science 315:1559–1561, doi:10.1126/science.1138478

    Article  Google Scholar 

  • Jansen E, Overpeck J, Briffa KR, Duplessy JC, Joos F, Masson-Delmotte V, Olago D, Otto-Bliesner B, Peltier WR, Rahmstorf S, Ramesh R, Raynaud D, Rind D, Solomina O, Villalba R, Zhang D (2007) Palaeoclimate. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Mille HL (eds) Climate change 2007: the physical science basis. Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jenkins A, Dutrieux P, Jacobs SS, McPhail SD, Perrett JR, Webb AT, White D (2010) Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nat Geosci 3:468–472. doi:10.1038/ngeo890

    Article  Google Scholar 

  • Jevrejeva S, Moore JC, Grinsted A (2010) How will sea level respond to changes in natural and anthropogenic forcings by 2100? Geophys Res Lett 37:L07,703. doi:10.1029/2010GL042947

    Article  Google Scholar 

  • Joughin I, Rignot E, E RC, Lucchitta BK, Bohlander J (2003) Timing of recent accelerations of Pine Island Glacier. Geophys Res Lett 30:1706

    Article  Google Scholar 

  • Joughin I, Abdalati W, Fahnestock M (2004) Large fluctuations in speed on Greenlands Jakobshavn Isbrae glacier. Nature 432:608–610. doi:10.1038/nature03130

    Article  Google Scholar 

  • Joughin I, Das SB, King MA, Smith BE, Howat IM, Moon T (2008a) Seasonal speedup along the Western Flank of the Greenland Ice Sheet. Science 320:781–783. doi:10.1126/science.1153288

    Article  Google Scholar 

  • Joughin I, Howat I, Alley RB, Ekstrom G, Fahnestock M, Moon T, Nettles M, Truffer M, Tsai VC (2008b) Ice-front variation and tidewater behavior on Helheim and Kangerdlugssuaq Glaciers, Greenland. J Geophys Res 113:F01,004. doi:10.1029/2007JF000837

    Google Scholar 

  • Kabat P, Fresco LO, Stive MJF, Veerman CP, van Alphen JSLJ, Parmet BWAH, Hazeleger W, Katsman CA (2009) Dutch coasts in transition. Nat Geosci 2:7. doi:10.1038/ngeo572

    Article  Google Scholar 

  • Katsman CA, Church JA, Kopp RE, Kroon D, Oppenheimer M, Plag HP, Rahmstorf S, Ridley J, von Storch H, Vaughan DG, van der Wal RSW (2008a) High-end projection for local sea level rise along the Dutch coast in 2100 and 2200. In: Exploring high-end climate change scenarios for flood protection of the Netherlands. KNMI/Alterra, The Netherlands, pp 15–81. Available from http://www.knmi.nl/bibliotheek/knmipubWR/WR2009-05.pdf

  • Katsman CA, Hazeleger W, Drijfhout SS, van Oldenborgh GJ, Burgers G (2008b) Climate scenarios of sea level rise for the northeast Atlantic Ocean: a study including the effects of ocean dynamics and gravity changes induced by ice melt. Clim Change. doi:10.1007/s10584-008-9442-9

    Google Scholar 

  • Khan SA, Wahr J, Stearns LA, Hamilton GS, van Dam T, Larson KM, Francis O (2007) Elastic uplift in southeast Greenland due to rapid ice mass loss. Geophys Res Lett 34:L21701. doi:10.1029/2007GL031468

    Article  Google Scholar 

  • Kooi H, Johnston P, Lambeck K, Smither C, Molendijk R (1998) Geological causes of recents (~100 yr) vertical land movement in the Netherlands. Tectonophysics 299:297–316

    Article  Google Scholar 

  • Kopp RE, Simons FJ, Mitrovica JX, Maloof AC, Oppenheimer M (2009) Probabilistic assessment of sea level during the last interglacial. Nature 462:863–867. doi:10.1038/nature08686

    Article  Google Scholar 

  • Krabill W, Abdalati W, Frederick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas R, Wright W, Yungel J (2000) Greenland ice sheet: high-elevation balance and peripheral thinning. Science 289:428–530

    Article  Google Scholar 

  • Krabill W, Hanna E, Huybrechts P, Abdalati W, Cappelen J, Csatho B, Frederick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas R, Yungel J (2004) Greenland ice sheet: increased coastal thinning. Geophys Res Lett 31:L24,402. doi:10.1029/2004GL021533

    Article  Google Scholar 

  • Landerer FW, Jungclaus JH, Marotzke J (2007) Regional dynamic and steric sea level change in response to the IPCC-A1B scenario. J Phys Oceanogr 37:296–312

    Article  Google Scholar 

  • Laurian A, Drijfhout S (2010) Response of the South Atlantic circulation to an abrupt Atlantic THC collapse. Clim Dyn. doi:10.1007/s00382-010-0890-3

    Google Scholar 

  • Lenderink G, Buishand TA, van Deursen WPA (2007) Estimation of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach. Hydrol Earth Syst Sci 11:1145–1159

    Article  Google Scholar 

  • Lenton TM (2006) Climate change to the end of the millennium. Clim Change 76:7–29

    Article  Google Scholar 

  • Levermann A, Griesel A, Hofmann M, Montoya M, Rahmstorf S (2004) Dynamic sea level changes following changes in the thermohaline circulation. Clim Dyn 24:347–354

    Article  Google Scholar 

  • Lisiecki LE, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic 18O records. Paleoceanography 20:1–17

    Google Scholar 

  • Lowe JA, Gregory JM (2005) The effects of climate change on storm surges around the United Kingdom. Philos Trans R Soc 363:1313–1328

    Article  Google Scholar 

  • Luthcke SB, Zwally HJ, Abdalati W, Rowlands DD, Ray RD, Nerem RS, Lemoine FG, McCarthy JJ, Chinn DS (2006) Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science 314:1286–1289. doi:10.1126/science.1130776

    Article  Google Scholar 

  • Meehl G, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007a) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Mille HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group 1 to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007b) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394

    Article  Google Scholar 

  • Meier MF, Dyurgerov MB, Rick UK, O’Neel S, Pfeffer WT, Anderson RS, Anderson SP, Glazovsky AF (2007) Glaciers dominate eustatic sea-level ris ein the 21st century. Science 317:1064–1067. doi:10.1126/science.1143906

    Article  Google Scholar 

  • Mercer JH (1978) West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster. Nature 271:321–325

    Article  Google Scholar 

  • Middelkoop H, Daamen K, Gellens D, Grabs W, Kwadijk JCJ, Lang H, Parmet BWAH, Schadler B, Schulla J, Wilke K (2001) Impact of climate change on hydrological regimes and water resources management in the Rhine basin. Clim Change 49:105–128

    Article  Google Scholar 

  • Milne GA, Gehrels WR, Hughes CW, Tamisiea ME (2009) Identifying the causes for sea-level change. Nat Geosci 2:471–478. doi:10.1038/NGEO544

    Article  Google Scholar 

  • Mitrovica JX, Tamisiea ME, Davis JL, Milne GA (2001) Recent mass balance of polar ice sheets inferred from patterns of global sea level change. Nature 409:1026–1029

    Article  Google Scholar 

  • Nick FM, Vieli A, Howat IM, Joughin I (2009) Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nat Geosci 2:110–114. doi:10.1038/NGEO394

    Article  Google Scholar 

  • Ohmura A (2004) Cryosphere during the twentieth century, the state of the planet. IUGG Geophys Monogr 150:239–257

    Article  Google Scholar 

  • Otto-Bliesner BL, Marshall SJ, T OJ, Miller GH, Hu A, CAPE Last Interglaciation Project members (2006) Simulating Arctic climate warmth and ice-field retreat in the last interglaciation. Science 311:1751–1753. doi:10.1126/science.1120808

    Article  Google Scholar 

  • Overpeck JT, Otto-Bliesner BL, Miller GH, Muhs DR, Alley RB, Kiehl JT (2006) Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science 311:1747–1750. doi:10.1126/science.1115159

    Article  Google Scholar 

  • Pfeffer WT (2007) A simple mechanism for irreversible tidewater glacier retreat. J Geophys Res 112:F03S25. doi:10.1029/2006JF000590

    Article  Google Scholar 

  • Pfeffer WT, Harper J, ONeel S (2008) Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 321:1340–1343

    Article  Google Scholar 

  • Plag HP, Juettner HU (2001) Inversion of global tide gauge data for present day ice load changes. Proceedings of the second international symposium on environmental research in the Arctic and 5th Ny-Alesund scientific seminar, pp 301–317

  • Pritchard H, Vaughan DG (2007) Widespread acceleration of tide water glaciers on the Antarctic Peninsula. J Geophys Res 112:F03S29. doi:10.1029/2006JF000597

    Article  Google Scholar 

  • Pritchard H, Arthern RJ, Vaughan DG, Edwards LA (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461. doi:10.1038/nature08471

    Google Scholar 

  • Radic V, Hock R (2010) Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. Geophys Res Letters 115:F01,010. doi 10.1029/2009JF001373

    Google Scholar 

  • Rahmstorf S (2007a) A semi-empirical approach to projecting future sea level rise. Science 315:368–370. doi:10.1126/science.1135456

    Article  Google Scholar 

  • Rahmstorf S (2007b) Response to Comments on “A Semi-Empirical Approach to Projecting Future Sea level Rise”. Science 317:1866. dOI:10.1126/science.1141283

    Article  Google Scholar 

  • Ramillien G, Lombard A, Cazenave A, Ivins ER, Llubes M, Remy F, Biancale R (2006) Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE. Glob Planet Change 53:198–208

    Article  Google Scholar 

  • Raper SCB, Braithwaite RJ (2005) The potential for sea level rise: new estimates from glacier and ice cap area and volume distribution. Geophys Res Lett 32:L05,502. doi:10.1029/2004GL02181

    Google Scholar 

  • Rignot EG, Kanagaratnam P (2006) Changes in the Velocity Structure of the Greenland Ice Sheet. Science 311:986–990

    Article  Google Scholar 

  • Rignot EG, Thomas RH (2002) Mass balance of polar ice sheets. Science 297:1502–1506

    Article  Google Scholar 

  • Rignot EG, Bamber J, van den Broeke M, Davis C, Li Y, van de Berg W, van Meijgaard E (2008) Recent Antarctic mass loss from radar interferometry and regional climate modelling. Nat Geosci 2:106–110. doi:10.1038/ngeo102

    Article  Google Scholar 

  • Rohling EJ, Grant K, Hemleben C, Siddall M, Hoogakker BAA, Bolshaw M, Kucera M (2008) High rates of sea level rise during the last interglacial period. Nat Geosci 1:38–42. doi:10.1038/ngeo.2007.28

    Article  Google Scholar 

  • Scambos T, Bohlander JA, Shuman CA, Skvarca P (2004) Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys Res Lett 31:L18,402. doi:10.1029/2004GL020670

    Article  Google Scholar 

  • Schmith T, Johansen S, Thejll P (2007) Comment on “A Semi-Empirical Approach to Projecting Future Sea level Rise”. Science 317. doi:10.1126/science.1143286

    Google Scholar 

  • Shabalova MV, van Deursen WPA, Buishand TA (2004) Assessing future discharge of the river Rhine using regional climate model integrations and a hydrological model. Clim Res 23:233–246

    Article  Google Scholar 

  • Shackleton NJ, Hall MA, Vincent E (2000) Phase relationships between millennial-scale events 64,000–24,000 years ago. Paleoceanography 15:565–569

    Article  Google Scholar 

  • Stammer D (2008) Response of the global ocean to Greenland and Antarctic ice melting. J Geophys Res 113:C06,022. doi:10.1029/2006JC004079

    Article  Google Scholar 

  • Sterl A, Severijns C, Dijkstra HA, Hazeleger W, van Oldenborgh G, van den Broeke M, Burgers G, van den Hurk B, van Leeuwen PJ, van Velthoven P (2008a) When can we expect extremely high surface temperatures? Geophys Res Lett 35:L14,703. doi:10.1029/2008GL034071

    Article  Google Scholar 

  • Sterl A, Weisse R, Lowe J, von Storch H (2008b) Winds and storm surges along the Dutch coast. In: Exploring high-end climate change scenarios for flood protection of the Netherlands. KNMI/Alterra, The Netherlands, pp 82–98. Available from http://www.knmi.nl/bibliotheek/knmipubWR/WR2009-05.pdf

  • Sterl A, van den Brink HW, de Vries H, Haarsma R, van Meijgaard E (2009) An ensemble study of extreme North Sea storm surges in a changing climate. Ocean Sci 5:369–378. doi:10.5194/os-5-369-2009

    Article  Google Scholar 

  • Straneo F, Hamilton GS, Sutherland DA, Stearns LA, Davidson F, Hammill MO, Stenson GB, Rosing-Asvid A (2010) Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland. Nat Geosci 3:182–186. doi:10.1038/ngeo764

    Article  Google Scholar 

  • Thomas R, Rignot E, Casassa G, Kanagaratnam P, Acuna C, Akins T, Brecher H, Frederick E, Gogineni P, Krabil W, Manizade S, Ramamoorthy H, Rivera A, Russell R, Sonntag J, Swift R, Yungel J, Zwally J (2004) Accelerated Sea-Level Rise from West Antarctica. Science 306:255–258. doi:10.1126/science.1099650

    Article  Google Scholar 

  • Thomas R, Frederick E, Krabill W, Manizade S, Martin C (2006) Progressive increase in ice loss from Greenland. Geophys Res Lett 33:L10,503. doi:10.1029/2006GL026075

    Article  Google Scholar 

  • van de Wal RSW, Wild M (2001) Modelling the response of glaciers to climate change, applying volume-area scaling in combination with a high resolution GCM. Clim Dyn 18:359–366

    Article  Google Scholar 

  • van de Wal RSW, Boot W, van den Broeke M, Smeets CJPP, Reijmer CH, Donker JJA, Oerlemans J (2008) Large and rapid velocity changes in the ablation zone of the Greenland ice sheet. Science 321:111–113

    Article  Google Scholar 

  • van den Hurk BJJM, Klein Tank AMG, Lenderink G, van Ulden AP, van Oldenborgh GJ, Katsman CA, van den Brink HW, Keller F, Bessembinder JJF, Burgers G, Komen GJ, Hazeleger W, Drijfhout SS (2006) KNMI climate change scenarios 2006 for the Netherlands. Technical report WR-2006-01, KNMI. Available from www.knmi.nl/climatescenarios

  • van den Hurk BJJM, Klein Tank AMG, Lenderink G, van Ulden AP, van Oldenborgh GJ, Katsman CA, van den Brink HW, Keller F, Bessembinder JJF, Burgers G, Komen GJ, Hazeleger W, Drijfhout SS (2007) New climate change scenarios for the Netherlands. Water Sci Technol 56:27–33. doi:10.2166/wst.2007.533

    Google Scholar 

  • Vaughan DG (2006) Recent trends in melting conditions on the Antarctic Peninsula and their implications for ice-sheet mass balance. Arct Antarct Alp Res 38:147–152

    Article  Google Scholar 

  • Vaughan DG (2008) West Antarctic Ice Sheet collapse—the fall and rise of a paradigm. Clim Change 91:65–79. doi:10.1007/s10584-008-9448-3

    Article  Google Scholar 

  • Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys Res Lett 36:L19,503. doi:10.1029/2009GL040222

    Article  Google Scholar 

  • Velicogna I, Wahr J (2005) Greenland mass balance from GRACE. Geophys Res Lett 32:L18,505. doi:10.1029/2005GL023955

    Google Scholar 

  • Velicogna I, Wahr J (2006a) Acceleration of Greenland ice mass loss in spring 2004. Nature 443:329–331

    Article  Google Scholar 

  • Velicogna I, Wahr J (2006b) Measurements of time-variable gravity shows mass loss in Antarctica. Science 311:1754. doi:10.1126/science.1123785

    Article  Google Scholar 

  • Vellinga M, Wood RA (2002) Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim Change 54:251–267

    Article  Google Scholar 

  • Vellinga P, Katsman CA, Sterl A, Beersma JJ, Church JA, Hazeleger W, Kopp RE, Kroon D, Kwadijk J, Lammersen R, Lowe J, Marinova N, Oppenheimer M, Plag HP, Rahmstorf S, Ridley J, von Storch H, Vaughan DG, van der Wal RSW, Weisse R (2008) Exploring high-end climate change scenarios for flood protection of The Netherlands. International scientific assessment carried out at request of the delta committee. Scientific Report WR-2009-05. KNMI/Alterra, The Netherlands. Available from http://www.knmi.nl/bibliotheek/knmipubWR/WR2009-05.pdf

  • Vermeer M, Rahmstorf S (2009) Global sea level linked to global temperature. Proc Natl Acad Sci USA 106:21,527–21,532. doi:10.1073/pnas.0907765106

    Article  Google Scholar 

  • von Storch H, Zorita E, Gonzalez-Rouco F (2009) Relationships between global mean sea-level and global mean temperature and heat-flux in a climate simulation of the past millennium. Ocean Dyn 58:227–236. doi:10.1007/s10236-088-0142-9

    Article  Google Scholar 

  • WASA-Group (1998) Changing waves and storms in the Northeast Atlantic? Bull Am Meteorol Soc 79:741–760

    Article  Google Scholar 

  • Wigley TML (2005) The climate change commitment. Science 307:1766–1769

    Article  Google Scholar 

  • Wingham DJ, Ridout AJ, Scharroo R, Arthern RJ, Shum CK (1998) Antarctic elevation change from 1992 to 1996. Science 282:456–458. doi:10.1126/science.282.5388.456

    Article  Google Scholar 

  • Wingham DJ, Shepherd A, Muir A, Marshall G (2006) Mass balance of the Antarctic ice sheet. Philos Trans R Soc 364:1627–1635

    Article  Google Scholar 

  • Woodward RS (1888) On the form and position of mean sea level. US Geol Surv Bull 48:87–170

    Google Scholar 

  • Woth K (2005) North Sea storm surge statistics based on projections in a warmer climate: how important are driving GCM and the chosen emission scenario? Geophys Res Lett 32:L22,708. doi:10.1029/2005GL023762

    Article  Google Scholar 

  • Wouters B, Chambers D, Schrama E (2008) GRACE observes small-scale mass loss in Greenland. Geophys Res Lett 35:L20,501. doi:10.1029/2008GL034816

    Article  Google Scholar 

  • Yin J, Schlesinger ME, Stouffer RJ (2009) Model projections of rapid sea-level rise on the northeast coast of the United States. Nat Geosci 2:262–266. doi:10.1038/NGEO462

    Article  Google Scholar 

  • Zagwijn WH (1983) Sea level changes in The Netherlands during the Eemian. Geol Mijnb 62:437–450

    Google Scholar 

  • Zagwijn WH (1996) An analysis of Eemian climate in western and central Europe. Quat Sci Rev 15:451–469

    Article  Google Scholar 

  • Zwally HJ, Abdalati W, Herring T, Larson K, Saba J, Steffen K (2002) Surface meltininduced acceleration of greenland ice-sheet flow. Science 218:218–222

    Article  Google Scholar 

  • Zwally H, Giovinetto M, Li J, Cornejo H, Beckley M, Brenner A, co-authors (2005) Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea level rise: 1992–2002. J Glaciol 51:509–527

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Royal Netherlands Meteorological Institute (KNMI), Global Climate Division, P.O. Box 201, 3730, AE De Bilt, The Netherlands

    Caroline A. Katsman

  2. KNMI, De Bilt, The Netherlands

    A. Sterl, J. J. Beersma & W. Hazeleger

  3. Meteo Consult BV, Wageningen, The Netherlands

    H. W. van den Brink

  4. Centre for Australian Weather and Climate Research, A partnership between CSIRO and the Bureau of Meteorology, and the Antarctic Climate and Ecosystems CRC, Hobart, Australia

    J. A. Church

  5. Woodrow Wilson School of Public and International Affairs and Department of Geosciences, Princeton University, Princeton, NJ, USA

    R. E. Kopp & M. Oppenheimer

  6. School of GeoSciences, University of Edinburgh, Edinburgh, Scotland

    D. Kroon

  7. Free University, Amsterdam, The Netherlands

    D. Kroon

  8. Deltares, Delft, The Netherlands

    J. Kwadijk

  9. Rijkswaterstaat Waterdienst , Lelystad, The Netherlands

    R. Lammersen

  10. Met Office Hadley Centre, Met Office, UK

    J. Lowe & J. Ridley

  11. Nevada Bureau of Mines and Geology and Seismological Laboratory, University of Nevada, Carson City, NV, USA

    H. -P. Plag

  12. GKSS Research Center, Institute for Coastal Research, Geesthacht, Germany

    H. von Storch & R. Weisse

  13. British Antarctic Survey, Natural Environment Research Council, Cambridge, UK

    D. G. Vaughan

  14. Alterra, Wageningen University and Research Centre, Wageningen, The Netherlands

    P. Vellinga

  15. DEOS, Delft University of Technology, Delft, The Netherlands

    L. L. A. Vermeersen

  16. Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, The Netherlands

    R. S. W. van de Wal

Authors
  1. Caroline A. Katsman
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. A. Sterl
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. J. J. Beersma
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. H. W. van den Brink
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. J. A. Church
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. W. Hazeleger
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. R. E. Kopp
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. D. Kroon
    View author publications

    You can also search for this author in PubMed Google Scholar

  9. J. Kwadijk
    View author publications

    You can also search for this author in PubMed Google Scholar

  10. R. Lammersen
    View author publications

    You can also search for this author in PubMed Google Scholar

  11. J. Lowe
    View author publications

    You can also search for this author in PubMed Google Scholar

  12. M. Oppenheimer
    View author publications

    You can also search for this author in PubMed Google Scholar

  13. H. -P. Plag
    View author publications

    You can also search for this author in PubMed Google Scholar

  14. J. Ridley
    View author publications

    You can also search for this author in PubMed Google Scholar

  15. H. von Storch
    View author publications

    You can also search for this author in PubMed Google Scholar

  16. D. G. Vaughan
    View author publications

    You can also search for this author in PubMed Google Scholar

  17. P. Vellinga
    View author publications

    You can also search for this author in PubMed Google Scholar

  18. L. L. A. Vermeersen
    View author publications

    You can also search for this author in PubMed Google Scholar

  19. R. S. W. van de Wal
    View author publications

    You can also search for this author in PubMed Google Scholar

  20. R. Weisse
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Caroline A. Katsman.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Cite this article

Katsman, C.A., Sterl, A., Beersma, J.J. et al. Exploring high-end scenarios for local sea level rise to develop flood protection strategies for a low-lying delta—the Netherlands as an example. Climatic Change 109, 617–645 (2011). https://doi.org/10.1007/s10584-011-0037-5

Download citation

  • Received: 24 November 2009

  • Accepted: 21 January 2011

  • Published: 24 February 2011

  • Issue Date: December 2011

  • DOI: https://doi.org/10.1007/s10584-011-0037-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Surface Mass Balance
  • Atmospheric Temperature Rise
  • Glacier Acceleration
  • Modest Scenario
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature