Skip to main content

Advertisement

Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Climatic Change
  3. Article

Temperature stabilization, ocean heat uptake and radiative forcing overshoot profiles

  • Open access
  • Published: 07 December 2010
  • Volume 108, pages 107–134, (2011)
  • Cite this article
Download PDF

You have full access to this open access article

Climatic Change Aims and scope Submit manuscript
Temperature stabilization, ocean heat uptake and radiative forcing overshoot profiles
Download PDF
  • Daniel J. A. Johansson1,2 
  • 1849 Accesses

  • 20 Citations

  • 5 Altmetric

  • 1 Mention

  • Explore all metrics

Abstract

Political leaders in numerous nations argue for an upper limit of the global average surface temperature of 2 K above the pre-industrial level, in order to attempt to avoid the most serious impacts of climate change. This paper analyzes what this limit implies in terms of radiative forcing, emissions pathways and abatement costs, for a range of assumptions on rate of ocean heat uptake and climate sensitivity. The primary aim is to analyze the importance of ocean heat uptake for radiative forcing pathways that temporarily overshoot the long-run stabilization forcing, yet keep the temperature increase at or below the 2 K limit. In order to generate such pathways, an integrated climate-economy model, MiMiC, is used, in which the emissions pathways generated represent the least-cost solution of stabilizing the global average surface temperature at 2 K above the pre-industrial level. We find that the level of overshoot can be substantial. For example, the level of overshoot in radiative forcing in 2100 ranges from about 0.2 to 1 W/m2, where the value depends strongly and positively on the effective diffusivity of heat in the oceans. Measured in relative terms, the level of radiative forcing overshoot above its longrun equilibrium level in 2100 is 20% to 60% for high values of climate sensitivity (i.e., about 4.5 K) and 8% to 30% for low values of climate sensitivity (i.e., about 2 K). In addition, for cases in which the radiative forcing level can be directly stabilized at the equilibrium level associated with a specific climate sensitivity and the 2 K limit, the net present value abatement cost is roughly cut by half if overshoot pathways are considered instead of stabilization of radiative forcing at the equilibrium level without an overshoot.

Article PDF

Download to read the full article text

Similar content being viewed by others

A review of progress towards understanding the transient global mean surface temperature response to radiative perturbation

Article Open access 18 July 2016

Greater committed warming after accounting for the pattern effect

Article 04 January 2021

Datasets for the CMIP6 Scenario Model Intercomparison Project (ScenarioMIP) Simulations with the Coupled Model CAS FGOALS-f3-L

Article Open access 21 November 2020

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Climate Sciences
  • Climate Change Mitigation
  • Climate-Change Policy
  • Climate Change
  • Climate Change Management
  • Environmental Economics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Allan R et al (2007) 2007 Bali climate declaration by scientists. Climate Change Research Centre, University of New South Wales (UNSW), Sydney, Australia. Available online at http://www.ccrc.unsw.edu.au/news/2007/Bali.html

  • Allen MR, Frame DJ, Huntingford C, Jones CD, Lowe JA, Meinshausen M, Meinshausen N (2009) Warming caused by cumulative carbon emissions towards the trillionth ton. Nature 458:1163–1166

    Article  Google Scholar 

  • Andreae MO, Jones CD, Cox PM (2005) Strong Present-day aerosol cooling implies a hot future. Nature 435:1187–1190

    Article  Google Scholar 

  • Andrews DR, Allen MR (2008) Diagnosis of climate models in terms of transient climate response and feedback response time. Atmos Sci Lett 9:7–12

    Article  Google Scholar 

  • Azar C, Rodhe H (1997) Targets for stabilization of atmospheric CO2. Science 276:1818–1819

    Article  Google Scholar 

  • Baker MB, Roe GH (2009) The shape of things to come: why is climate change so predictable? J Climate 22:4574–4589

    Article  Google Scholar 

  • Bindoff NL, Willebrand J, Artale V, Cazenave A, Gregory J, Gulev S, Hanawa K, Le Quéré C, Levitus S, Nojiri Y, Shum CK, Talley LD, Unnikrishnan A (2007) Observations: oceanic climate change and sea level. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • BP (2009) BP statistical review of world energy 2009. Available online at via www.bp.com

  • CDIAC (2010) Carbon dioxide analysis center. Available online at cdiac.ornl.gov

  • Cubasch U, Meehl GA, Boer GJ, Stouffer RJ, Dix M, Noda A, Senior CA, Raper S, Yap KS (2001) Projections of future climate change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D (eds) Climate change 2001: the scientific basis: contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, p 944

    Google Scholar 

  • Dasgupta P (2008) Discounting climate change. J Risk Uncertain 37:141–169

    Article  Google Scholar 

  • den Elzen MGJ, van Vuuren DP (2007) Peaking profiles for achieving long-term temperature targets with more likelihood at lower costs. PNAS 104(46):17931–17936

    Article  Google Scholar 

  • Domingues CM, Church JA, White NJ, Gleckler PJ, Wijffels SE, Barker PM, Dunn JR (2008) Improved estimates of upper-ocean warming and muti-decadal sea-level rise. Nature 453:1090–1093

    Article  Google Scholar 

  • Forest CE, Stone PH, Sokolov AP (2006) Estimated PDFs of climate system properties including natural and anthropogenic forcings. Geophys Res Lett 33:L01705

    Article  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe G, Myhre DC, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Frank CD, Esper J, Raible CC, Büntgen U, Trouet V, Stocker B, Joos F (2010) Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature 463(28):527–530

    Article  Google Scholar 

  • Friedlingstein P, Cox P, Betts R, Bopp L, Von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Climate 19:3337–3353

    Article  Google Scholar 

  • Grieser J, Schönwiese CD (2001) Process, forcing and signal analysis of global mean temperature variations by means of a three-box energy balance model. Clim Change 48:617–646

    Article  Google Scholar 

  • Hansen J, Russell Lacis A, Fung I, Rind D, Stone P (1985) Climate response times: dependence on climate sensitivity and ocean mixing. Science 229(4716):857–859

    Article  Google Scholar 

  • Hansen J, Nazarenko L, Ruedy R, Sato M, Willis J, Del Genio A, Koch D, Lacis A, Lo K, Menon S, Novakov T, Perlwitz J, Russell G, Schmidt GA, Tausnev N (2005) Earth’s energy imbalance: confirmation and implications. Science 308(5727):1431–1435

    Article  Google Scholar 

  • Harvey LDD (1986) Effect of ocean mixing on the transient climate response to a CO2 increase - analysis of recent model results. J Geophys Res, Atmos 91(2):2709–2718

    Article  Google Scholar 

  • Harvey LDD (1989) Managing Atmospheric CO2. Clim Change 15:343–381

    Google Scholar 

  • Harvey LDD (1996) Polar boundary layer plumes and bottom water formation: a missing element in ocean general circulation models. J Geophys Res 101(C9):799–808

    Article  Google Scholar 

  • Harvey LDD (2007a) Dangerous anthropogenic interference, dangerous climatic change, and harmful climatic change: non-trivial distinctions with significant policy implications. Clim Change 82(1–2):1–25

    Article  Google Scholar 

  • Harvey LDD (2007b) Allowable CO2 concentrations under the United Nations Framework Convention on Climate Change as a function of the climate sensitivity probability distribution function. Environ Res Lett 2:014001

    Article  Google Scholar 

  • Harvey LDD, Huang Z (2001) A quasi-one-dimensional coupled climate-carbon cycle model 1. Description and behavior of the climate component. J Geophys Res 106 (C10):22339–22353

    Article  Google Scholar 

  • Harvey LDD, Schneider SH (1985) Transient climate response to external forcing on 100–104 year time scales, Part 1: experiments with globally averaged, coupled atmosphere and ocean energy balance models. J Geophys Res 90(D1):2191–2205

    Article  Google Scholar 

  • Hegerl GC, Zwiers FW, Braconnot P, Gillett NP, Luo Y, Marengo Orsini JA, Nicholls N, Penner JE, Stott PA (2007) Understanding and attributing climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Hoffert MI, Callegari AJ, Hsieh CT (1980) The role of deep sea heat storage in the secular response to climatic forcing. J Geophys Res 85(C11):6667–6679

    Article  Google Scholar 

  • Hooss G, Voss R, Hasselmann K, Maier-Reimer E, Joos F (2001) A nonlinear impulse response model of the coupled carbon cycle-climate system (NICCS). Clim Dyn 18(3–4):189–202

    Article  Google Scholar 

  • IIASA (2009) International Institute for Applied System Analysis (IIASA) GGI scenario database version 2.0. Available online at: http://www.iiasa.ac.at/Research/GGI/DB/

  • Jarvis A, Li S (2010) The contribution of timescales to the temperature response of climate models. Clim Dyn. doi:10.1007/s00382-010-0753-y

    Google Scholar 

  • Johansson DJA, Persson UM, Azar C (2006) The cost of using global warming potentials: analysing the trade-off between CO2, CH4, and N2O. Clim Change 77:291–309

    Article  Google Scholar 

  • Johansson DJA, Persson UM, Azar C (2008) Uncertainty and learning: implications for the trade-off between short-lived and long-lived greenhouse gases. Clim Change 88:293–308

    Article  Google Scholar 

  • Joshi MM, Gregory JM, Webb MJ, Sexton DMH, Johns TC (2008) Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Clim Dyn 30(5):455–465

    Article  Google Scholar 

  • Joos F, Bruno M, Fink R, Siegenthaler U, Stocker TF, Le Quéré C, Sarmiento JL (1996) An efficient and accurate representation of complex oceanic and biospheric models of anthropogenic carbon uptake. Tellus B 48(3):397–417

    Article  Google Scholar 

  • Knutti R, Hegerl GC (2008) The equilibrium sensitivity of the Earth’s temperature to radiation changes. Nat Geosci 1:735–743

    Article  Google Scholar 

  • Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008) Tipping elements in the Earth’s climate system. PNAS 105(6):1786–1793

    Article  Google Scholar 

  • Levitus S (1982) Climatological atlas of the world oceans. NOAA Professional Paper 13. US Government Printing Office, Washington, DC

    Google Scholar 

  • Li S, Jarvis A (2009) Long run surface temperature dynamics of an A-OGCM: the HadCM3 4×CO2 forcing experiment revisited. Clim Dynam 33(6):817–825

    Article  Google Scholar 

  • Lowe JA, Huntingford C, Raper SCB, Jones CD, Liddicoat SK, Gohar LK (2009) How difficult is it to recover from dangerous levels of global warming? Environ Res Lett 4:014012

    Article  Google Scholar 

  • Manne AS, Richels RG (2001) An alternative approach to establishing trade-offs among greenhouse gases. Nature 410(6829):675–677

    Article  Google Scholar 

  • Matthews HD (2006) Emissions targets for CO2 stabilization as modified by carbon cycle feedbacks. Tellus B 58:591–602

    Article  Google Scholar 

  • Matthews HD, Caldeira K (2008) Stabilizing climate requires near-zero emissions. Geophys Res Lett 35:L04705

    Article  Google Scholar 

  • Meehl GA, Washington WM, Collins WD, Arblaster JM, Hu A, Buja LE, Strand WG, Teng H (2005) How much more global warming and sea level rise? Science 307(5716):1769–1772

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Meinshausen M (2006) What does a 2°C target mean for greenhouse gas concentrations? - A brief analysis based on multi-gas emission pathways and several climate sensitivity uncertainty estimates. In: Schellnhuber JS, Cramer W, Nakicenovic N, Wigley TML, Yohe G (eds) Avoiding dangerous climate change. Cambridge University Press, Cambridge

  • Meinshausen M, Raper SCB, Wigley TML (2008) Emulating IPCC AR4 atmosphere-ocean and carbon cycle models for projecting global-mean, hemispheric and land/ocean temperatures: MAGICC 6.0. Atmos Chem Phys Discuss 8:6153–6272

    Article  Google Scholar 

  • Meinshausen M, Meinshausen N, Hare W, Raper SCB, Frieler K, Knutti R, Frame DJ, Allen MR (2009) Greenhouse-gas emission targets for limiting global warming to 2°C. Nature 458:1158–1162

    Article  Google Scholar 

  • Munk WH (1966) Abyssal recipes. Deep-Sea Res 13:707–730

    Google Scholar 

  • Munk WH, Wunsch C (1998) Abyssal recipes II: energetic of tidal and wind mixing. Deep-Sea Res I 45:1977–2010

    Article  Google Scholar 

  • NASA Goddard Institure for Space Studies (GISS) (2009a) Forcings in GISS climate model. Available online at http://data.giss.nasa.gov/modelforce/

  • NASA Goddard Institure for Space Studies (GISS) (2009b) GISS surface temperature analysis. Available online at http://data.giss.nasa.gov/gistemp/graphs/. Accessed on 01 April 2009

  • Nordhaus WD (2008) A question of balance: economic modeling of global warming. Yale University Press, New Haven

    Google Scholar 

  • O’Neill B, Oppenheimer M (2002) Dangerous Climate Impacts and the Kyoto Protocol. Science 296(5575):1971–1972

    Article  Google Scholar 

  • O’Neill BC, Oppenheimer M (2004) Climate change impacts are sensitive to the concentration stabilization path. PNAS 101(47):16411–16416

    Article  Google Scholar 

  • Oppenheimer M, Petsonk A (2005) Article 2 of thee UNFCCC: historical origins, recent interpretations. Clim Change 73:195–226

    Article  Google Scholar 

  • Plattner GK, Knutti T, Joos F, Stocker TF, von Bloh W, Brovkin V, Cameron D, Driesschaert E, Dutkiewicz S, Edwards NR, Fichefet T, Hargreaves JC, Jones CD, Loutre MF, Matthews HD, Mouchet A, Müller SA, Nawrath S, Price A, Sokolov A, Strassmann KM, Weaver AJ (2008) Long-term climate commitments projected with climate-carbon cycle models. J Climate 21:2721–2751

    Article  Google Scholar 

  • Prather M, Ehhalt D, Dentener F, Derwent R, Dlugokencky E, Holland E, Isaksen I, Katima J, Kirchhoff V, Matson P, Midgley P, Wang M (2001) Atmospheric chemistry and greenhouse gases. Houghton JT et al (eds) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Ramaswamy V, Boucher O, Haigh J, Hauglustaine D, Haywood J, Myhre G, Nakajima T, Shi GY, Solomon S (2001) Radiative forcing of climate change. In: Houghton JT et al (eds) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Cilmate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Raper SCB, Gregory JM, Osborn TJ (2001) Use of an upwelling-diffusion energy balance climate model to simulate and diagnose A/OGCM results. Clim Dyn 17:601–613

    Article  Google Scholar 

  • Riahi K, Grubler A, Nakicenovic N (2006) Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol Forecast Soc Change 74(7):887–935

    Article  Google Scholar 

  • Roe GH, Baker MB (2007) Why is climate sensitivity so unpredictable? Science 318(5850):629–632

    Article  Google Scholar 

  • Schlesinger ME, Jiang X (1990) Simple model representation of atmosphere-ocean GCMs and estimation of the time scale of CO2-induced climate change. J Climate 3:1297–1315

    Article  Google Scholar 

  • Schneider SH, Mastrandrea MD (2005) Probabilistic assessment of “dangerous” climate change and emissions pathways. PNAS 102(44):15728–15735

    Article  Google Scholar 

  • Shine KP, Fuglestvedt JS, Hailemariam K, Stuber N (2005) Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Clim Change 68(3):281–302

    Article  Google Scholar 

  • Smith JB, Schneider SH, Oppenheimer M, Yohe GW, Hare W, Mastrandrea MD, Patwardhan A, Burton I, Corfee-Morlot J, Magadza CHD, Füssel HM, Pittock AB, Rahman A, Suarez A, van Ypersele J-P (2009) Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) “reasons for concern”. PNAS 106(11):4133–4137

    Article  Google Scholar 

  • Stern NH (2006) Stern review: the economics of climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Stouffer RJ (2004) Time scales of climate response. J Climate 17:209–217

    Article  Google Scholar 

  • Tanaka K (2008) Inverse estimation for the simple Earth system model ACC2 and its applications. PhD thesis, International Max Planck Research School on Earth System Modelling, Hamburg, Germany. Available online at http://www.sub.uni-hamburg.de/opus/volltexte/2008/3654/

  • Thorn MS, Harte J (2006) Missing feedbacks, asymmetric uncertainties, and the underestimation of future warming. Geophys Res Lett 33:L10703

    Article  Google Scholar 

  • USEPA (2006) Global mitigation of non-CO2 greenhouse gases. US Environmental Protection Agency, Office of Atmospheric Programs (6207J), Washington DC

  • Velders GJM, Fahey DW, Daniel JS, McFarland M, Anderson SO (2009) The large contribution of projected HFC emissions to future climate forcing. PNAS 106(27):10949–10954

    Article  Google Scholar 

  • Whitworth T III, Warren BA, Nowlin WD Jr, Rutz SB, Pillsbury RD, Moore MI (1999) On the deep western-boundary current in the Southwest Pacific Basin. Prog Oceanogr 43:1–54

    Article  Google Scholar 

  • Wigley TML (1991) A simple inverse carbon cycle model a simple inverse carbon cycle model. Glob Biogeochem Cycles 5(4):373–382

    Article  Google Scholar 

  • Wigley TML (2004) Modeling climate change under no-policy and policy emissions pathways. In: Gramme T (ed) The benefits of climate change policies: analytical and framework issues. OECD, Paris, pp 221–248

    Google Scholar 

  • Wigley TML (2005) The climate change commitment. Science 307(5716):1766–1769

    Article  Google Scholar 

  • Wigley TML, Schlesinger ME (1985) Analytical solution for the effect of increasing CO2 on global mean temperature. Nature 315:649–652

    Article  Google Scholar 

  • Wigley TML, Raper SCB (2001) Interpretation of high projections for global-mean warming. Science 293(5529):451–454

    Article  Google Scholar 

  • Wigley TML, Smith SJ, Prather MJ (2002) Radiative forcing due to reactive gas emissions. J Climate 15:2690–2696

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Division of Physical Resource Theory, Department of Energy and Environment, Chalmers University of Technology, Gothenburg, Sweden

    Daniel J. A. Johansson

  2. Environmental Economics Unit, Department of Economics, School of Business, Economics and Law, Gothenburg University, Gothenburg, Sweden

    Daniel J. A. Johansson

Authors
  1. Daniel J. A. Johansson
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Daniel J. A. Johansson.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Cite this article

Johansson, D.J.A. Temperature stabilization, ocean heat uptake and radiative forcing overshoot profiles. Climatic Change 108, 107–134 (2011). https://doi.org/10.1007/s10584-010-9969-4

Download citation

  • Received: 15 September 2009

  • Accepted: 05 October 2010

  • Published: 07 December 2010

  • Issue Date: September 2011

  • DOI: https://doi.org/10.1007/s10584-010-9969-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Climate Sensitivity
  • Abatement Cost
  • Energy Balance Model
  • Heat Uptake
  • Ocean Heat Uptake
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

152.53.39.118

Not affiliated

Springer Nature

© 2025 Springer Nature