Skip to main content

Bright water: hydrosols, water conservation and climate change

Abstract

Because air–water and water–air interfaces are equally refractive, cloud droplets and microbubbles dispersed in bodies of water reflect sunlight in much the same way. The lifetime of sunlight-reflecting microbubbles, and hence the scale on which they may be applied, depends on Stokes Law and the influence of ambient or added surfactants. Small bubbles backscatter light more efficiently than large ones, opening the possibility of using highly dilute micron-radius hydrosols to substantially brighten surface waters. Such microbubbles can noticeably increase water surface reflectivity, even at volume fractions of parts per million and such loadings can be created at an energy cost as low as J m − 2 to initiate and mW m − 2 to sustain. Increasing water albedo in this way can reduce solar energy absorption by as much as 100 W m − 2, potentially reducing equilibrium temperatures of standing water bodies by several Kelvins. While aerosols injected into the stratosphere tend to alter climate globally, hydrosols can be used to modulate surface albedo, locally and reversibly, without risk of degrading the ozone layer or altering the color of the sky. The low energy cost of microbubbles suggests a new approach to solar radiation management in water conservation and geoengineering: Don’t dim the Sun; Brighten the water.

This is a preview of subscription content, access via your institution.

References

  • Abkarian M, Subramaniam AB, Kim S-H, Larsen RJ, Yang S-M, Stone H (2007) Dissolution arrest and stability of particle-covered bubbles. Phys Rev Lett 99:188301

    Article  Google Scholar 

  • Akbari S, Menon J, Rosenfeld A (2009) Global cooling: increasing world-wide urban albedos to offset CO2. Clim Change 94:275–286. doi:10.1007/s10584-008-9515-9

    Article  Google Scholar 

  • Brennen CE (2005) Cavitation and bubble dynamics. Oxford U Press, New York

    Google Scholar 

  • Buhaug Ø, Corbett JJ, Endresen Ø, Eyring V, Faber J, Hanayama S, Lee DS et al (2009) Second IMO GHG study, April 2009. International Maritime Organization (IMO), London

    Google Scholar 

  • Crutzen P (2006) Albedo enhancement by stratospheric sulfur injections. Clim Change 77:211–219

    Article  Google Scholar 

  • D’Arrigo JS, Saiz-Jimemez C, Reimer NS (1984) Geochemical properties and biochemical composition of the surfactant mixture surrounding natural microbubbles in aqueous media. J Colloid Interface Sci 100:96–105

    Article  Google Scholar 

  • Dickey TD, Falkowski P (2003) Solar energy and its biological–physical interactions in the sea. In: Robinson AR et al (eds) The sea, vol 12. Wiley, New York, pp 401–404

    Google Scholar 

  • Dressaire E, Bee R, Bell C, Lips A, Stone HA (2008) Interfacial polygonal nanopatterning of stable microbubbles. Science 321:1198–1201

    Article  Google Scholar 

  • Ellis EC, Goldewijk KK, Siebert S, Lightman D, Ramankutty N (2010) Anthropogenic transformation of the biomes, 1700 to 2000. Glob Ecol Biogeogr 19(5):589–606. doi:10.1111/j.1466-8238.2010.00540

    Google Scholar 

  • Gargett AE (1991) Physical processes and the maintenance of nutrient rich euphotic zones. Limnol Oceanogr 36:1527–1545

    Article  Google Scholar 

  • Gnanadesikan A, Emanuel K, Vecchi GA, Anderson WG, Hallberg R (2010) How ocean color can steer Pacific tropical cyclones. Geophys Res Lett 37:L18802. doi:10.1029/2010GL044514

    Article  Google Scholar 

  • Gokbulak F, Ozban S (2006) Water loss through evaporation from water surfaces of lakes and reservoirs. E-Water. Available online at http://www.ewaonline.de/journal/2006_07.pdf

  • Gordon HR (1985) Ship perturbation of irradiance measurements at sea: 1: Monte Carlo simulations. Appl Opt 24:4172–4182

    Article  Google Scholar 

  • Graham-Rove D (2008) Future transport. Nature 454:924–925

    Article  Google Scholar 

  • Greene CH, Baker D, Miller D (2010) A very inconvenient truth. Oceanography 23:214–221

    Google Scholar 

  • Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A neoproterozoic snowball Earth. Science 281:1341–1346

    Article  Google Scholar 

  • Hossein J, Syed J, Inoguchi Y, Ma X (2010) Surfactants. Available online at http://www.sriconsulting.com/SCUP/Public/Reports/SURFA000s

  • Hwang PA, Xu D, Wu J (1989) Breaking of wind-generated waves: measurements and characteristics. J Fluid Mech 202:177–200

    Article  Google Scholar 

  • Jin Z, Charlock T, Rutledge K (2002) Analysis of broadband solar radiation and albedo over the ocean surface at COVE. J Atm Oceanic Tech 19:1585–1601

    Article  Google Scholar 

  • Jin Z, Charlock TP, Rutledge K, Stamnes K, Wang Y (2006) Analytical solution of radiative transfer in the coupled atmosphere system with a rough surface. Appl Opt 45:7443–7455

    Article  Google Scholar 

  • Johnson BD, Cooke RC (1980) Organic particle and aggregate formation resulting from the dissolution of bubbles in seawater. Limnol Oceanogr 25:653–661

    Article  Google Scholar 

  • Johnson BD, Cooke RC (1981) Generation of stabilized microbubbles in seawater. Science 213:209–211

    Article  Google Scholar 

  • Johnson BD, Wangersky PJJ (1987) Microbubbles: Stabilization by monolayers of adsorbed particles. J Geophys Res 92(C13):14641–14647

    Article  Google Scholar 

  • Kato H (1999) Skin friction reduction by microbubbles. Tokyo University Department of Engineering monograph, Kawagoe, pp 2–18

  • Katz ME, Wright JD, Miller BS, Cramer BS, Fennel K, Falkowski PG (2004) Evolutionary trajectories and biogeochemical impacts of marine eukaryotic phytoplankton. Ann Rev Ecol Evol Syst 35:523–556

    Article  Google Scholar 

  • Keith DW, Ha-Duong M, Stolaroff JK (2005) Climate strategy with CO2 capture from the air. Clim Change 74:17–45

    Article  Google Scholar 

  • Latham J (1990) Control of global warming? Nature 347:339–340

    Article  Google Scholar 

  • Latham J (2002) Amelioration of global warming by controlled enhancement of the albedo and longevity of low-level maritime clouds. Atmos Sci Lett 3:52–58. doi:10.1006/Asle.2002.0048

    Article  Google Scholar 

  • Latham J, Rasch P, Chen CC, Kettles L, Gadian A, Gettleman A, Morrison H, Bower K, Choularton T (2008) Global temperature stabilization via controlled albedo enhancement of low-level maritime clouds. Phil Trans R Soc A 366:3969–3987

    Article  Google Scholar 

  • Le Quéré C, Rödenbeck C, Buitenhuis C, Conway T, Langenfelds R, Gomez A, Labuschagne C, et al (2007) Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316:1735–1738

    Article  Google Scholar 

  • Lozano MM, Longo ML (2009) Microbubbles coated with disaturated lipids and DSPPEG2000: phase behavior, collapse transitions, and permeability. Langmuir 25:3705–3712

    Article  Google Scholar 

  • Lozano MM, Talu E, Longo ML (2007) Dissolution of microbubbles generated in seawater obtained offshore: behavior and surface tension measurement. J Geophys Res 112(C):12001

    Article  Google Scholar 

  • Lovelock J (2009) A geophysiologist’s thoughts on geoengineering. Phil Trans R Soc A 366:3883–3890. doi:10.1098/rsta.2008.0135

    Article  Google Scholar 

  • MacCracken M (2009) On the possible use of geoengineering to moderate specific climate change impacts. Environ Res Lett 4:1–14

    Article  Google Scholar 

  • Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox P (2009) Impact of changes in diffuse radiation on the global carbon land sink. Nature 458:1014–1017

    Article  Google Scholar 

  • Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaier DP, Stouffer RJ (2008) Stationarity is dead: whither water management? Science 319:573–574

    Article  Google Scholar 

  • Monahan EC, Mac Niocaill G (eds) (1986) Oceanic whitecaps and their role in air-sea exchange processes. P234-5 ISBN 902772251X Springer Verlag, Heidelberg, pp 294

    Google Scholar 

  • Moore KD, Voss KV, Gordon HR (2000) Spectral reflectance of whitecaps: Their contribution to water-leaving radiance. J Geophys Res 105(C3):6493–6499

    Article  Google Scholar 

  • Morton O (2009) Climate crunch: great white hope. Nature 458:1097–1100. doi:10.1038/4581097a

    Article  Google Scholar 

  • Neiberger M (1957) Weather modification and smog. Science 126:637–645

    Article  Google Scholar 

  • Ohnari H, Hiro J (2006) Micro and nano bubble generation in compressed two phase water jets. Japan J Multiphase Flow 20(Pt.1):57–61

    Google Scholar 

  • Oleson K, Bonan GB, Feddema J (2010) Effects of white roofs on urban temperature in a global climate model. Geophys Res Lett 37:L03701. doi:10.1029/2009GL042194

    Article  Google Scholar 

  • Onhari H, Takahashi M, Himuro S (2002) Microbubble generation in sheared high Reynolds number flows. Japan J Multiphase Flow 16:130–137

    Google Scholar 

  • Pacala S, Socolow R (2004) Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science 305(5686):968–972

    Article  Google Scholar 

  • Piskozub J, Stramski D, Terrill E, Melville WK (2009) Small-scale effects of underwater bubble clouds on ocean reflectance: 3-D modeling results. Opt Express 17:11747–11752

    Article  Google Scholar 

  • Pu G, Borden MA, Longo ML (2006) Collapse and shedding transitions in binary lipid monolayers coating microbubbles. Langmuir 22:2993–2999

    Article  Google Scholar 

  • Pyne S (1997) Vestal fire. University of Washington Press, Seattle. 657 pp

    Google Scholar 

  • Qin S, Caskey CF, Ferrara KW (2009) Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering. Phys Med Biol 54(6):R27

    Article  Google Scholar 

  • Ramanathan V, Cess R, Harrison E, Minnis P, Barkstrom B, Ahmad E, Hartmann D (1989) Cloud-radiative forcing and climate: results from the Earth radiation budget experiment. Science 243:57–69

    Article  Google Scholar 

  • Rasch PJ, Crutzen PJ, Coleman DB (2008) Exploring the geoengineering of climate using stratospheric sulfate aerosols. Geophys Res Lett 35:L02809. doi:10.1029/2007GL032179

    Article  Google Scholar 

  • Read KA, Mahajan A, Carpenter L, Evans MJ, Faria H, Saiz-Lopez A, Pilling MJ, Plane JMC (2009) Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean. Nature 453:1232–1235

    Article  Google Scholar 

  • Robock A, Marquardt AB, Kravitz B, Stenchikov G (2009) Benefits, risks, and costs of stratospheric geoengineering. Geophys Res Lett 36(L):19703

    Article  Google Scholar 

  • Sadatomi M, Kawahara A, Matsuyama F, Kimura T (2007) An advanced microbubble generator and its application to a newly developed bubble-jet type air lift. Multiph Sci Tech 19:329–342

    Google Scholar 

  • Salter S, Sortino G, Latham J (2008) Sea-going hardware for the cloud albedo method of reversing global warming. Phil Trans R Soc A 366:3989–4006

    Article  Google Scholar 

  • Schneider SH (1996) Geoengineering: could-or should-we do it? Clim Change 33:291–302

    Article  Google Scholar 

  • Seitz F (1958) On the theory of the bubble chamber. Phys Fluids 1:2–10

    Article  Google Scholar 

  • Seitz R (1986) Siberian fire as ‘nuclear winter’ guide. Nature 32:116–117

    Article  Google Scholar 

  • Seitz R (1991) Black skies or pale fire? Nature 350:182–183

    Article  Google Scholar 

  • Seitz R (2009) The next top model. Foreign Aff 88(4):68

    Google Scholar 

  • Shepherd J (ed) (2009) Geoengineering the climate: science, governance and uncertainty. London Science Policy Centre, The Royal Society London

  • Solomon JS, Qin D, Manning M, Chen Z, Marquis M, Avery KB, Tignor M, Miller HL (eds) (2007) Climate change: the physical science basis. Contribution of working group I to the fourth assessment report of the IPCC. Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 996 pp

  • Stramski D, Tegowski J (2001) Effects of intermittent entrainment of air bubbles by breaking wind waves on ocean reflectance and underwater light field. J Geophys Res 106(C12 31):345–360

    Google Scholar 

  • Teller E, Wood L, Hyde R (1996) Global warming and ice ages: I. Prospects for physics-based modulation of global change. UCRL-JC-128715, Lawrence Livermore National Laboratory, Livermore

  • Terrill E, Melville WK, Stramski D (2001) Bubble entrainment by breaking waves and their influence on optical scattering in the upper ocean. J Geophys Res 106(C8):16,815–16,823

    Article  Google Scholar 

  • Thorpe SA (1982) The physics of breaking waves. Phil Trans R Soc A 304:155–210

    Article  Google Scholar 

  • Thorpe SA (1992) Bubble clouds and the dynamics of the upper ocean. Q J R Meteorol Soc 118:1–22

    Article  Google Scholar 

  • Tilmes S, Müller R, Salawitch R (2008) The sensitivity of polar ozone depletion to proposed geoengineering schemes. Science 320:1201–1204

    Article  Google Scholar 

  • Toole DA, Siegel DA, Menzies DW, Neumann MJ, Smith RC (2000) Remote-sensing reflectance determinations in the coastal ocean environment. Appl Opt 39:456–469

    Article  Google Scholar 

  • University Consortium on Atmospheric Research (2008) Description of the NCAR Community Atmosphere Model (CAM3). Available online at http://www.cesm.ucar.edu/models/atm-cam/docs/description/

  • Van Vuuren DP, Eickhout B, Lucas PL, Meinshausen M, Plattner G-H, Joos F, Strassmann K, Smith S, Wigley T, et al (2009) Temperature increase of 21st century mitigation scenarios. PNAS 106:9–16

    Article  Google Scholar 

  • Victor D, Morgan MG, Apt J, Steinbruner J, Ricke K (2009) The geoengineering option: a last resort against global warming? Foreign Aff 88(2):64–76

    Google Scholar 

  • Weber TC, Lyons AC, Bradley DL (2005) An estimate of the gas transfer rate from oceanic bubbles derived from multibeam sonar observations of a ship wake. J Geophys Res 110:C04005. doi:10.1029/2004JC002666

    Article  Google Scholar 

  • Whitlock CH, Bartlett DS, Gurganus EA (1982) Sea foam reflectance and influence on optimum wavelength for remote sensing of ocean aerosols. Geophys Res Lett 9:719–722

    Article  Google Scholar 

  • Willis J (1971) Some high values for the albedo of the sea. J Appl Meteorol 10:1296–1392

    Article  Google Scholar 

  • Wuebbles DJ, Naik V, Foley J (2001) Influence of geoengineered climate on the biosphere. Eos 82:47

    Google Scholar 

  • Wurl O, Holmes M (2008) The gelatinous nature of the sea-surface microlayer. Mar Chem 110:89–97

    Article  Google Scholar 

  • Zhang X, Lewis M, Johnson B (1998) Influence of bubbles on scattering of light in the ocean. Appl Opt 37:6525–6536

    Article  Google Scholar 

  • Zhang X, Lewis M, Bissett WP, Johnson B, Kohler D (2004) Optical influence of ship wakes. Appl Opt 43:3122–3132

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell Seitz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Seitz, R. Bright water: hydrosols, water conservation and climate change. Climatic Change 105, 365–381 (2011). https://doi.org/10.1007/s10584-010-9965-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-010-9965-8

Keywords

  • Surface Albedo
  • International Maritime Organization
  • Solar Radiation Management
  • Stratospheric Aerosol
  • Planetary Albedo