Climatic Change

, Volume 103, Issue 1–2, pp 327–338 | Cite as

The impact of uncertain emission trading markets on interactive resource planning processes and international emission trading experiments

  • Stefan PicklEmail author
  • Erik Kropat
  • Heiko Hahn


Interactive resource planning is an increasingly important aspect of emission trading markets. The conferences of Rio de Janeiro, 1992, and Kyoto, 1997, originally focusing on environmental protection at both macro- and micro-economic levels, called for new economic instruments of this kind. An important economic tool in this area is Joint Implementation (JI), defined in Article 6 of the Kyoto Protocol. Sustainable development can be guaranteed only if JI is embedded in optimal energy management. In this contribution we describe and evaluate one international procedure within uncertain markets which helps to establish optimal energy management and interactive resource planning processes within uncertain emission trading markets.


Kyoto Protocol Emission Trading Joint Implementation Cost Game Knowledge Codification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Branzei R, Dimitrov D, Tijs S (2005) Models in cooperative game theory, crisp, fuzzy, and multi-choice games. Springer, BerlinGoogle Scholar
  2. Coase RH (1988) The firm, the market, and the law. University of Chicago Press, Chicago, pp 1–31Google Scholar
  3. Cowan R, David PA et al (2000) The explicit economics of knowledge codification and tacitness. Ind Corp Change 9(2):211–253CrossRefGoogle Scholar
  4. Ermolieva T, Ermoliev Y, Fischer G, Jonas M, Makowski M, Wagner F (2010) Carbon emission trading and carbon taxes under uncertainties. Clim Change. doi: 10.1007/s10584-010-9910-x Google Scholar
  5. Grabner C, Hahn H, Leopold-Wildburger U, Pickl S (2009) Analyzing the sustainability of harvesting behaviour and the relationship to personality traits in a simulated Lotka–Volterra biotope. Eur J Oper Res 193(3):761–767CrossRefGoogle Scholar
  6. Knight FH (1921) Risk, uncertainty and profit. Houghton Mifflin, BostonGoogle Scholar
  7. Krabs W, Pickl S (2003) Controllability of a time-discrete dynamical system with the aid of the solution of an approximation problem. Control Cybernetics 32(4):57–74Google Scholar
  8. Kropat E, Weber G-W, Akteke-Öztürk B (2008) Eco-finance networks under uncertainty. In: Proceedings of the international conference on engineering optimization, EngOpt 2008, Rio de Janeiro, Brazil (ISBN 978857650156, CD)Google Scholar
  9. Langlois RN (1984) Internal organisation in a dynamic context: some theoretical considerations. In: Jussawalla M, Ebenfield H (eds) Communication and information economics: new perspectives. Elsevier, Amsterdam, pp 23–49Google Scholar
  10. MacNeil IR (1978) Contracts: adjustment of long-term economic relations under classical, neoclassical, and relational contract law. Northwest Univ Law Rev 72(6):854–905Google Scholar
  11. Nahorski Z, Horabik J (2010) Compliance and emission trading rules for asymmetric emission uncertainty estimates. Clim Change. doi: 10.1007/s10584-010-9916-4 Google Scholar
  12. Nightingale P (2003) If Nelson and Winter are only half right about tacit knowledge, which half? A searlean critique of ‘codification’. Ind Corp Change 12(2):149–183CrossRefGoogle Scholar
  13. Pickl S (1999) Der τ-value als Kontrollparameter. Modellierung und analyse eines joint-implementation programmes mithilfe der kooperativen dynamischen Spieltheorie und der diskreten Optimierung. Shaker, Aachen (in German)Google Scholar
  14. Pickl S (2002) An iterative solution to the nonlinear time-discrete TEM model—the occurrence of chaos and a control theoretic algorithmic approach. AIP Conf Proc 627(1):196–205CrossRefGoogle Scholar
  15. Shvidenko A, Schepaschenko D, McCallum I, Nilsson S (2010) Can the uncertainty of full carbon accounting of forest ecosystems be made acceptable to policymakers? Clim Change. doi: 10.1007/s10584-010-9918-2 Google Scholar
  16. Weber G-W, Alparslan-Gök SZ, Söyler B (2009a) A new mathematical approach in environmental and life sciences: gene-environment networks and their dynamics. Environ Model Assess 14(2):267–288. doi: 10.1007/s10666-007-9137-z CrossRefGoogle Scholar
  17. Weber G-W, Kropat E, Akteke-Öztürk B, Görgülü Z-K (2009b) A survey on OR and mathematical methods applied on gene-environment networks. Cent Eur J Oper Res 17(3):315–341. doi: 10.1007/s10100-009-0092-4 (special issue on “innovative approaches for decision analysis in energy, health, and life sciences”)CrossRefGoogle Scholar
  18. Winiwarter W, Muik B (2010) Statistical dependence in input data of national greenhouse gas inventories: effects on the overall inventory uncertainty. Clim Change. doi: 10.1007/s10584-010-9921-7 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Universität der Bundeswehr MünchenNeubiberg-MunichGermany

Personalised recommendations