Skip to main content

Advertisement

Log in

GNSS remote sensing of the Australian tropopause

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Radio occultation (RO) techniques that use signals transmitted by Global Navigation Satellite Systems (GNSS) have emerged over the past decade as an important tool for measuring global changes in tropopause temperature and height, a valuable capacity given the tropopause’s sensitivity to temperature variations. This study uses 45,091 RO data from the CHAMP (CHAllenging Minisatellite Payload, 80 months), GRACE (Gravity Recovery And Climate Experiment, 23 months) and COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate, 20 months) satellites to analyse the variability of the tropopause’s height and temperature over Australia. GNSS RO temperature profiles from CHAMP, GRACE, and COSMIC are first validated using radiosonde observations provided by the Bureau of Meteorology (Australia). These are compared to RO soundings from between 2001 and 2007 that occurred within 3 h and 100 km of a radiosonde. The results indicate that RO soundings provide data of a comparable quality to radiosonde observations in the tropopause region, with temperature deviations of less than 0.5 ± 1.5 K. An analysis of tropopause height and temperature anomalies indicates a height increase over Australia as a whole of ca. 4.8 ± 1.3 m between September 2001 and April 2008, with a corresponding temperature decrease of −0.019 ± 0.007 K. A similar pattern of increasing height/decreasing temperature was generally observed when determining the spatial distribution of the tropopause height and temperature rate of change over Australia. Although only a short period has been considered in this study, a function of the operating time of these satellites, the results nonetheless show an increase in the height of the tropopause over Australia during this period and thus may indicate regional warming. Several mechanisms could be responsible for these changes, such as an increase in the concentration of greenhouse gases in the atmosphere, and lower stratospheric cooling due to ozone loss, both of which have been observed during the last decades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthes RA, Bernhardt PA, Chen Y, Cucurull L, Dymond KF, Ector D, Healy SB, Ho S-P, Hunt DC, Kuo Y-H, Liu H, Manning K, McCormick C, Meehan TK, Randel WJ, Rocken C, Schreiner WS, Sokolovskiy SV, Syndergaard S, Thompson TK, Trenberth KE, Wee T-K, Yen NL, Zeng Z (2008) The COSMIC/FORMOSAT-3 mission: early results. Bull Am Meteorol Soc 89:313–333

    Article  Google Scholar 

  • Awange JL, Grafarend EW (2005) “GPS meteorology in environmental monitoring”, solving algebraic computational problems in geodesy and geoinformatics. Springer, Berlin, pp 217–244

    Google Scholar 

  • Cheng CZ, Kuo Y-H, Anthes RA, Wu L (2006) Satellite constellation monitors global and space weather. EOS Trans AGU 87. doi:10.1029/2006EO170003

  • Foelsche U, Borsche M, Steiner AK, Gobiet A, Pirscher B, Kirchengast G, Wickert J, Schmidt T (2007) Observing upper troposphere-lower stratosphere climate with radio occultation from the CHAMP satellite. Clim Dyn 31:49–65

    Article  Google Scholar 

  • Gorbunov ME, Gurvich AS, Bengtsson L (1996) Advanced algorithms of inversion of GPS/MET satellite data and their application to the reconstruction of temperature and humidity. Max-Plunk-Institut fur Meteorologie, Hamburg

    Google Scholar 

  • Honika PK (1998) Statistics of the global tropopause pressure. Mon Weather Rev 126:3303–3325

    Article  Google Scholar 

  • IPCC (2007) IPCC fourth assessment report: climate change 2007: the physical science basis. Intergovernmental panel on climate change. (http://www.ipcc.ch/)

  • Kishore P, Namboothiri SP, Igarashi K, Jiang JH, Ao CO (2006) Climatological characteristics of the tropopause parameters derived from GPS/CHAMP and GPS/SAC-C measurements. J Geophys Res 111. doi:10.1029/2005JD006827

  • Kuo Y-H, Schreiner WS, Wang J, Rossiter DL, Zhang Y (2005) Comparison of GPS Radio occultation soundings with radiosonde. Geophys Res Lett 32. doi:10.1029/2004GL021443

  • Melbourne WG, Davis ES, Hajj GA, Hardy KR, Kursinski ER, Meehan TK, Young LE, Yunck TP (1994) The application of spaceborne GPS to atmospheric limb sounding and global change monitoring. JPL Publ 94-18

  • Murphy BF, Timbal B (2008) A review of recent climate variability and climate in southeastern Australia. Int J Climatol 28:859–879

    Article  Google Scholar 

  • Nichols N (2006) Detecting and attributing Australian climate change: a review. Aust Meteorol Mag 55:199–211

    Google Scholar 

  • Nishida M, Shimizu A, Tsuda T, Rocken C, Ware RH (2000) Seasonal and longitudinal variations in the tropical tropopause observed with the GPS occultation technique (GNSS/MET). J Meteorol Soc Jpn 78:691–700

    Google Scholar 

  • Santer BD, Wehner MF, Wigley TML, Sausen R, Meehl GA, Taylor KE, Ammann C, Arblaster J, Washington WM, Boyle JS, Brüggemann W (2003) Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science 301:479–483

    Article  Google Scholar 

  • Santer BD, Wigley TML, Simmons AJ, Kallberg PW, Kelly GA, Uppala SM, Ammann C, Boyle JS, Brüggemann W, Doutriaux C, Fiorino M, Mears C, Meehl GA, Sausen R, Taylor KE, Washington WM, Wehner MF, Wentz FJ (2004) Identification of anthropogenic climate change using a second-generation reanalysis. J Geophys Res 109. doi:10.1029/2004JD005075

  • Sausen R, Santer BD (2003) Use of changes in tropopause height to detect influences on climate. Meteorol Z 12:131–136

    Article  Google Scholar 

  • Schmidt T, Wickert J, Beyerle G, Heise S (2008) Global tropopause height trends estimated from GPS radio occultation data. Geophys Res Lett 35. doi:10.1029/2008GL034012

  • Schmidt T, Heise S, Wickert J, Beyerle G, Reigber C (2005) GPS radio occultation with CHAMP and SAC-C: global monitoring of thermal tropopause parameters. Atmos Chem Phys 5:1473–1488

    Article  Google Scholar 

  • Seidel DJ, Randel WJ (2006) Variability and trends in the global tropopause estimated from radiosonde data. J Geophys Res 111. doi:10.1029/2006JD007363

  • Steiner AK (1998) High resolution sounding of key climate variabilities using the radio occultation technique. Dissertation. Institution for Meteorology and Geophysics, University of Graz

  • Tsuda T, Heki K, Miyazaki S, Aonashi K, Hirahara K, Tobita M, Kimara F, Tabei T, Matsushima T, Kimura F, Satomura M, Kato T, Naito I (1998) GPS meteorology project of Japan—exploring frontiers of geodesy. Earth Planets Space 50(10):i–iv

    Google Scholar 

  • Ummenhofer CC, England MH, McIntosh PC, Meyers GA, Pook MJ, Risbey JS, Gupta AS, Taschetto AS (2009) What causes southeast Australia’s worst droughts? Geophys Res Lett 36. doi:10.1029/2008GL036801

  • Ware R, Exner M, Feng D, Gorbunov M, Hardy K, Herman B, Gorbunov M, Sokolovskiy S, Hardy Y, Kuo Y, Zou X, Trenbeth K, Meehan T, Melbourne W, Businger S (1996) GPS sounding of the atmosphere from Low Earth Orbit: preliminary results. Bull Am Meteorol Soc 77:19–40

    Article  Google Scholar 

  • Wickert J (2002) Das CHAMP-Radiookkultationsexperiment: algorithmen, prozessierungssystem und erste ergebnisse. Scientific Technical Report 02/07, GFZ, Potsdam

  • Wickert J (2004) Comparison of vertical refractivity and temperature profiles from CHAMP with radiosonde measurements. Scientific Report 04-09. Danish Meteorological Institute, Copenhagen

  • Wickert J, Reigber C, Beyerle G, König R, Marquardt C, Schmidt T, Grunwald L, Galas R, Meehan TK, Melbourne WG, Hocke K (2001) Atmospheric sounding by GPS radio occultation: first results from CHAMP. Geophys Res Lett 28. doi:10.1029/2001GL013117

  • Wickert J, Schmidt T, Beyerle G, König R, Reigber CH, Jakowski N (2004) The radio occultation experiment aboard CHAMP: operational data analysis and validation of atmospheric profiles. J Meteorol Soc Jpn 82(1B):381–395

    Article  Google Scholar 

  • Wickert J, Beyerle G, König R, Heise S, Grunwaldt L, Michalak G, Reigber CH, Schmidt T (2005) GPS radio occultation with CHAMP and GRACE: a first look at a new and promising satellite configuration for global atmospheric sounding. Ann Geophys 23(3):653–658

    Article  Google Scholar 

  • Wickert J, Michalak G, Schmidt T, Beyerle G, Cheng CZ, Healy SB, Heise S, Huang C-Y, Jakowski N, Köhler W, Mayer C, Offiler D, Ozawa E, Pavelyev AG, Rothacher M, Tapley B, Arras C (2009) GPS radio occultation: results from CHAMP, GRACE and FORMOSAT-3/COSMIC. Terrestrial, Atmospheric and Oceanic Sciences 20(1):35–50

    Article  Google Scholar 

  • WMO (1957) Definition of tropopause, Geneva. World Meteorological Organisation, Geneva

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Awange.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khandu, Awange, J.L., Wickert, J. et al. GNSS remote sensing of the Australian tropopause. Climatic Change 105, 597–618 (2011). https://doi.org/10.1007/s10584-010-9894-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-010-9894-6

Keywords

Navigation