Abstract
Reliable paleoclimate reconstructions are needed to assess if the recent climatic changes are unusual compared to pre-industrial climate variability. Here, we focus on one important problem in climate reconstructions: Transfer functions relating proxies (predictors) and target climatic quantities (predictands) can be seriously biased when predictand and predictor noise is not adequately accounted for, resulting in biased amplitudes of reconstructed climatic time series. We argue for errors-in-variables models (EVM) for unbiased identification of linear structural relationships between noisy proxies and target climatic quantities by (1) introducing underlying statistical concepts and (2) demonstrating the potential biases of using the EVM approach, the most commonly used direct ordinary least squares (OLS) regression, inverse OLS regression, or the reduced major axis method (‘variance matching’) with a simulation example of artificial noise-disturbed sinusoidal time series. We then develop an alternative strategy for paleoclimate reconstruction from tree-ring and other proxy data, explicitly accounting for the identified problem.
Similar content being viewed by others
References
Adcock RJ (1878) A problem in least squares. The Analyst (Annals of Mathematics) 5(2):53–54
Amman CM, Genton MG, Li B (2009) Technical note: correcting for signal attenuation from noise: sharpening the focus on past climate. Clim Past Discuss 5:1645–1657
Berkson J (1950) Are there two regressions? J Am Stat Assoc 45:164–180
Briffa KR, Osborn TJ, Schweingruber FH et al (2001) Low-frequency temperature variations from a northern tree ring density network. J Geophys Res - Atmos 106:2929–2941
Broecker WS (2001) Was the Medieval Warm Period global? Science 291:1497–1499
Brown RL (1957) Bivariate structural relation. Biometrika 44:84–96
Bürger G, Cubasch U (2005) Are multiproxy climate reconstructions robust? Geophys Res Lett 32. doi:10.1029/2005GL024155
Bürger G, Fast I, Cubasch U (2006) Climate reconstruction by regression—32 variations on a theme. Tellus 58A:227–235
Christiansen B, Schmith T, Thejll P (2009) A surrogate ensemble study of climate reconstruction methods: stochasticity and robustness. J Clim 22:951–976
Cook ER (1990) A conceptual linear aggregate model for tree rings. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: applications in the environmental sciences. Kluwer, Dordrecht, pp 98–104
Cook ER, Briffa KR, Meko DM et al (1995) The segment length curse in long tree-ring chronology development for paleoclimatic studies. The Holocene 5(2):229–237
Cook ER, Esper J, D’Arrigo RD (2004) Extra-tropical Northern Hemisphere land temperature variability over the past 1000 years. Quat Sci Rev 23:2063–2074
Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295:2250–2253
Esper J, Cook ER, Peters K, Schweingruber FH (2003) Tests of the RCS method for preserving low-frequency variability in long tree-ring chronologies. Tree-Ring Research 59:81–98
Esper J, Frank DC, Wilson RJS (2004) Low frequency ambition, high frequency ratification. EOS Trans AGU 85(12). doi:10.1029/2004EO120002
Esper J, Frank DC, Wilson RS, Briffa KR (2005) Effect of scaling and regression on reconstructed temperature amplitude for the past millennium. Geophys Res Lett 32. doi:1029/2004GL021236
Esper J, Frank DC, Luterbacher J (2007) On selected issues and challenges in dendroclimatology. In: Kienast F, Wildi O, Ghosh SA (eds) A changing world: challenges for landscape research. Springer, Dordrecht, pp 113–132
Fritts HC, Guiot J, Gordon GA, Schweingruber F (1990) Methods of calibration, verification, and reconstruction. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: applications in the environmental sciences. Kluwer, Dordrecht, pp 163–217
Frost C, Thompson SG (2002) Correcting for regression dilution bias: comparison of methods for a single predictor variable. J R Stat Soc A 163(2):173–189
Fuller WA (1987) Measurement error models. Wiley, New York, 440 pp
Gauß CF (1821) Theoria combinationis observationum erroribus minimis obnoxiae. Pars prior. Commentationes Societatis Regiae Scientiarum Gotti. Dieterich, Göttingen
Gauß CF (1823) Theoria combinationis observationum erroribus minimis obnoxiae. Pars posterior. Dieterich, Göttingen
Hartung J (1999) Statistik. Lehr- und Handbuch der angewandten Statistik, 12th edn. Oldenbourg, München
Hegerl GC, Crowley TJ, Allen M et al (2007) Detection of human influence on a new, validated 1500-year temperature reconstruction. J Clim 20:650–666
Huybers P (2005) Comment on “Hockey sticks, principal components, and spurious significance” by S. McIntyre and R. McKitrick. Geophys Res Lett 32. doi:10.1029/2005GL023395
Jones PD, Osborn TJ, Briffa KR (1997) Estimating sampling errors in large-scale temperature averages. J Clim 10:2548–2568
Juckes MN, Allen MR, Briffa KR, et al (2007) Millenial temperature reconstruction intercomparison and evaluation. Clim Past 3:591–609
Kendall MG (1951) Regression, structure and functional relationship. Part I. Biometrika 38(1–2):11–25
Kendall M, Stuart A (1973) The advanced theory of statistics. Vol 2: inference and relationship, 3rd edn. Griffin, London, 723 pp
Laws EA, Archie JW (1981) Appropriate use of regression analysis in marine biology. Mar Biol 65:13–16
Lee TCK, Zwiers FW, Tsao M (2007) Evaluation of proxy-based millenial reconstruction methods. Clim Dyn. doi:10.1007/s00382-007-0351-9
Leng L, Zhang T, Kleinman L, Zhu W (2007) Ordinary least square regression, orthogonal regression, geometric mean regression and their applications in aerosol science. J Phys Conf Ser 78:012084. doi:10.1088/1742-6596/78/1/012084
Loehle C (2005) Estimating climatic time series from multi-site data afflicted with dating error. Math Geol 37(2). doi:10.1007/s11004-005-1305-6
Loehle C (2008) A mathematical analysis of the divergence problem in dendroclimatology. Clim Change. doi:10.1007/s10584-008-9488-8
Madansky A (1959) The fitting of straight lines when both variables are subject to error. J Am Stat Assoc 54(285):173–205
Mann ME (2007) Climate over the past two millennia. Annu Rev Earth Planet Sci 35:111–136
Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787
Mann ME, Rutherford S, Wahl E, Ammann C (2005) Testing the fidelity of methods used in proxy-based reconstructions of past climate. J Clim 18:4097–4107
Mann ME, Rutherford S, Wahl E, Ammann C (2007a) Robustness of proxy-based climate field reconstruction methods. J Geophys Res 112. doi:10.1029/2006JD008272
Mann ME, Rutherford S, Wahl E, Amman C (2007b) Reply to comments on “Testing the fidelity of methods used in proxy-based reconstructions of past climate” by Smerdon and Kaplan. J Clim 20:5671–5674
Mann ME, Rutherford S, Wahl E, Ammann C (2007c) Reply to comments on “Testing the fidelity of methods used in proxy-based reconstructions of past climate” by Zorita et al. J Clim 20:3699–3703
Mann ME, Zhang Z, Hughes MK et al (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci 105:13252–13257
Markov AA (1908) Wahrscheinlichkeitsrechnung. Teubner, Leipzig
Markovsky I, van Huffel S (2007) Overview of total least squares methods. Signal Process 87(10):2283–2302
McArdle BH (1988) The structural relationship: regression in biology. Can J Zool 66:2329–2339
McArdle BH (2003) Lines, models, and errors: regression in the field. Limnol Oceanogr 48(3):1363–1366
McIntyre S, McKitrick R (2003) Corrections to the Mann et al. (1998) proxy data base and northern hemispheric average temperature series. Energy Environ 14(6):751–771
McIntyre S, McKitrick R (2005a) The M&M critique of the MBH98 northern hemisphere climate index: update and implications. Energy Environ 16(1):69–100
McIntyre S, McKitrick R (2005b) Hockey sticks, principal components, and spurious significance. Geophys Res Lett 32. doi:10.1029/2004GL021750
McIntyre S, McKitrick R (2005c) Reply to comment by Huybers on “Hockey sticks, principal components, and spurious significance”. Geophys Res Lett 32. doi:10.1029/2005GL023586
Melvin TM, Briffa KR (2008) A “signal-free” approach to dendroclimatic standardisation. Debdrochronologia 26:71–86
Moberg A, Sonechkin DM, Holmgren K et al (2005) Highly variable Northern Hemisphere temperatures reconstructed from low and high-resolution proxy data. Nature 433:613–617
National Research Council (2006) Surface temperature reconstructions for the last 2,000 years. National Academic Press, Washington, 145 pp
Osborn TJ, Briffa KR (2004) The real color of climate change? Science 306:621–622
Osborne C (1991) Statistical calibration: a review. Int Stat Rev 59(3):309–336
Raaijmakers JGW, Pieters JPM (1987) Measurement error and ANCOVA: functional and structural relationship approaches. Psychometrika 52(4):521–538
Rutherford S, Mann ME, Osborn TJ et al (2005) Proxy-based northern hemisphere surface temperature reconstructions: sensitivity to methodology, predictor network, target season and target domain. J Clim 18:2308–2329
Sachs HM, Webb T, III, Clark DR (1977) Paleoecological transfer functions. Annu Rev Earth Planet Sci 5:159–178
Smerdon JE, Kaplan A (2007) Comments on “Testing the fidelity of methods used in proxy-based reconstructions of past climate”: the role of the standardization interval. J Clim 20:5666–5670
Smerdon JE, González-Rouco JF, Zorita E (2008) Comment on “Robustness of proxy-based climate field reconstruction methods” by Michael E. Mann et al. J Geophys Res Atmospheres 113. doi:10.1029/2007JD009542
Thees B, Kutzbach L, Wilmking M, Zorita E (2009) Ein Bewertungsmaß für die amplitudentreue regressive Abbildung von verrauschten Daten im Rahmen einer iterativen “Errors in Variables”—Modellierung (EVM). GKSS Reports 2009/8. GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht, Germany, 20 pp (in German)
von Storch H, Zorita E, Jones JM et al (2004) Reconstructing past climate from noisy data. Science 306:679–682
von Storch H, Zorita E, González-Rouco F (2008) Assessment of three temperature reconstruction methods in the virtual reality of a climate simulation. Int J Earth Sci. doi:10.1007/s00531-008-0349-5
Zorita E (2009) Interactive comment on “Technical note: correcting for signal attenuation from noise: sharpening the focus on past climate” by C. M. Ammann et al. Clim Past Discuss 5:C394–C398
Zorita E, González-Rouco F, Legutge S (2003) Testing the Mann et al. (1998) approach to paleoclimate reconstructions in the context of a 1000-yr control simulation with the ECHO-G coupled climate model. J Clim 16:1378–1390
Zorita E, González-Rouco F, von Storch H (2007) Comments on “Testing the fidelity of methods used in proxy-based reconstructions of past climate” by Mann et al. J Clim 20:3693–3698
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kutzbach, L., Thees, B. & Wilmking, M. Identification of linear relationships from noisy data using errors-in-variables models—relevance for reconstruction of past climate from tree-ring and other proxy information. Climatic Change 105, 155–177 (2011). https://doi.org/10.1007/s10584-010-9877-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10584-010-9877-7


