Skip to main content

Advertisement

Log in

Identification of linear relationships from noisy data using errors-in-variables models—relevance for reconstruction of past climate from tree-ring and other proxy information

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Reliable paleoclimate reconstructions are needed to assess if the recent climatic changes are unusual compared to pre-industrial climate variability. Here, we focus on one important problem in climate reconstructions: Transfer functions relating proxies (predictors) and target climatic quantities (predictands) can be seriously biased when predictand and predictor noise is not adequately accounted for, resulting in biased amplitudes of reconstructed climatic time series. We argue for errors-in-variables models (EVM) for unbiased identification of linear structural relationships between noisy proxies and target climatic quantities by (1) introducing underlying statistical concepts and (2) demonstrating the potential biases of using the EVM approach, the most commonly used direct ordinary least squares (OLS) regression, inverse OLS regression, or the reduced major axis method (‘variance matching’) with a simulation example of artificial noise-disturbed sinusoidal time series. We then develop an alternative strategy for paleoclimate reconstruction from tree-ring and other proxy data, explicitly accounting for the identified problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adcock RJ (1878) A problem in least squares. The Analyst (Annals of Mathematics) 5(2):53–54

    Google Scholar 

  • Amman CM, Genton MG, Li B (2009) Technical note: correcting for signal attenuation from noise: sharpening the focus on past climate. Clim Past Discuss 5:1645–1657

    Article  Google Scholar 

  • Berkson J (1950) Are there two regressions? J Am Stat Assoc 45:164–180

    Article  Google Scholar 

  • Briffa KR, Osborn TJ, Schweingruber FH et al (2001) Low-frequency temperature variations from a northern tree ring density network. J Geophys Res - Atmos 106:2929–2941

    Article  Google Scholar 

  • Broecker WS (2001) Was the Medieval Warm Period global? Science 291:1497–1499

    Article  Google Scholar 

  • Brown RL (1957) Bivariate structural relation. Biometrika 44:84–96

    Google Scholar 

  • Bürger G, Cubasch U (2005) Are multiproxy climate reconstructions robust? Geophys Res Lett 32. doi:10.1029/2005GL024155

    Google Scholar 

  • Bürger G, Fast I, Cubasch U (2006) Climate reconstruction by regression—32 variations on a theme. Tellus 58A:227–235

    Google Scholar 

  • Christiansen B, Schmith T, Thejll P (2009) A surrogate ensemble study of climate reconstruction methods: stochasticity and robustness. J Clim 22:951–976

    Article  Google Scholar 

  • Cook ER (1990) A conceptual linear aggregate model for tree rings. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: applications in the environmental sciences. Kluwer, Dordrecht, pp 98–104

    Google Scholar 

  • Cook ER, Briffa KR, Meko DM et al (1995) The segment length curse in long tree-ring chronology development for paleoclimatic studies. The Holocene 5(2):229–237

    Article  Google Scholar 

  • Cook ER, Esper J, D’Arrigo RD (2004) Extra-tropical Northern Hemisphere land temperature variability over the past 1000 years. Quat Sci Rev 23:2063–2074

    Article  Google Scholar 

  • Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295:2250–2253

    Article  Google Scholar 

  • Esper J, Cook ER, Peters K, Schweingruber FH (2003) Tests of the RCS method for preserving low-frequency variability in long tree-ring chronologies. Tree-Ring Research 59:81–98

    Google Scholar 

  • Esper J, Frank DC, Wilson RJS (2004) Low frequency ambition, high frequency ratification. EOS Trans AGU 85(12). doi:10.1029/2004EO120002

    Google Scholar 

  • Esper J, Frank DC, Wilson RS, Briffa KR (2005) Effect of scaling and regression on reconstructed temperature amplitude for the past millennium. Geophys Res Lett 32. doi:1029/2004GL021236

    Google Scholar 

  • Esper J, Frank DC, Luterbacher J (2007) On selected issues and challenges in dendroclimatology. In: Kienast F, Wildi O, Ghosh SA (eds) A changing world: challenges for landscape research. Springer, Dordrecht, pp 113–132

    Google Scholar 

  • Fritts HC, Guiot J, Gordon GA, Schweingruber F (1990) Methods of calibration, verification, and reconstruction. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: applications in the environmental sciences. Kluwer, Dordrecht, pp 163–217

    Google Scholar 

  • Frost C, Thompson SG (2002) Correcting for regression dilution bias: comparison of methods for a single predictor variable. J R Stat Soc A 163(2):173–189

    Article  Google Scholar 

  • Fuller WA (1987) Measurement error models. Wiley, New York, 440 pp

    Google Scholar 

  • Gauß CF (1821) Theoria combinationis observationum erroribus minimis obnoxiae. Pars prior. Commentationes Societatis Regiae Scientiarum Gotti. Dieterich, Göttingen

  • Gauß CF (1823) Theoria combinationis observationum erroribus minimis obnoxiae. Pars posterior. Dieterich, Göttingen

  • Hartung J (1999) Statistik. Lehr- und Handbuch der angewandten Statistik, 12th edn. Oldenbourg, München

    Google Scholar 

  • Hegerl GC, Crowley TJ, Allen M et al (2007) Detection of human influence on a new, validated 1500-year temperature reconstruction. J Clim 20:650–666

    Article  Google Scholar 

  • Huybers P (2005) Comment on “Hockey sticks, principal components, and spurious significance” by S. McIntyre and R. McKitrick. Geophys Res Lett 32. doi:10.1029/2005GL023395

    Google Scholar 

  • Jones PD, Osborn TJ, Briffa KR (1997) Estimating sampling errors in large-scale temperature averages. J Clim 10:2548–2568

    Article  Google Scholar 

  • Juckes MN, Allen MR, Briffa KR, et al (2007) Millenial temperature reconstruction intercomparison and evaluation. Clim Past 3:591–609

    Article  Google Scholar 

  • Kendall MG (1951) Regression, structure and functional relationship. Part I. Biometrika 38(1–2):11–25

    Google Scholar 

  • Kendall M, Stuart A (1973) The advanced theory of statistics. Vol 2: inference and relationship, 3rd edn. Griffin, London, 723 pp

    Google Scholar 

  • Laws EA, Archie JW (1981) Appropriate use of regression analysis in marine biology. Mar Biol 65:13–16

    Article  Google Scholar 

  • Lee TCK, Zwiers FW, Tsao M (2007) Evaluation of proxy-based millenial reconstruction methods. Clim Dyn. doi:10.1007/s00382-007-0351-9

    Google Scholar 

  • Leng L, Zhang T, Kleinman L, Zhu W (2007) Ordinary least square regression, orthogonal regression, geometric mean regression and their applications in aerosol science. J Phys Conf Ser 78:012084. doi:10.1088/1742-6596/78/1/012084

    Article  Google Scholar 

  • Loehle C (2005) Estimating climatic time series from multi-site data afflicted with dating error. Math Geol 37(2). doi:10.1007/s11004-005-1305-6

    Google Scholar 

  • Loehle C (2008) A mathematical analysis of the divergence problem in dendroclimatology. Clim Change. doi:10.1007/s10584-008-9488-8

    Google Scholar 

  • Madansky A (1959) The fitting of straight lines when both variables are subject to error. J Am Stat Assoc 54(285):173–205

    Article  Google Scholar 

  • Mann ME (2007) Climate over the past two millennia. Annu Rev Earth Planet Sci 35:111–136

    Article  Google Scholar 

  • Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787

    Article  Google Scholar 

  • Mann ME, Rutherford S, Wahl E, Ammann C (2005) Testing the fidelity of methods used in proxy-based reconstructions of past climate. J Clim 18:4097–4107

    Article  Google Scholar 

  • Mann ME, Rutherford S, Wahl E, Ammann C (2007a) Robustness of proxy-based climate field reconstruction methods. J Geophys Res 112. doi:10.1029/2006JD008272

    Google Scholar 

  • Mann ME, Rutherford S, Wahl E, Amman C (2007b) Reply to comments on “Testing the fidelity of methods used in proxy-based reconstructions of past climate” by Smerdon and Kaplan. J Clim 20:5671–5674

    Article  Google Scholar 

  • Mann ME, Rutherford S, Wahl E, Ammann C (2007c) Reply to comments on “Testing the fidelity of methods used in proxy-based reconstructions of past climate” by Zorita et al. J Clim 20:3699–3703

    Article  Google Scholar 

  • Mann ME, Zhang Z, Hughes MK et al (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci 105:13252–13257

    Article  Google Scholar 

  • Markov AA (1908) Wahrscheinlichkeitsrechnung. Teubner, Leipzig

    Google Scholar 

  • Markovsky I, van Huffel S (2007) Overview of total least squares methods. Signal Process 87(10):2283–2302

    Article  Google Scholar 

  • McArdle BH (1988) The structural relationship: regression in biology. Can J Zool 66:2329–2339

    Article  Google Scholar 

  • McArdle BH (2003) Lines, models, and errors: regression in the field. Limnol Oceanogr 48(3):1363–1366

    Google Scholar 

  • McIntyre S, McKitrick R (2003) Corrections to the Mann et al. (1998) proxy data base and northern hemispheric average temperature series. Energy Environ 14(6):751–771

    Article  Google Scholar 

  • McIntyre S, McKitrick R (2005a) The M&M critique of the MBH98 northern hemisphere climate index: update and implications. Energy Environ 16(1):69–100

    Article  Google Scholar 

  • McIntyre S, McKitrick R (2005b) Hockey sticks, principal components, and spurious significance. Geophys Res Lett 32. doi:10.1029/2004GL021750

    Google Scholar 

  • McIntyre S, McKitrick R (2005c) Reply to comment by Huybers on “Hockey sticks, principal components, and spurious significance”. Geophys Res Lett 32. doi:10.1029/2005GL023586

    Google Scholar 

  • Melvin TM, Briffa KR (2008) A “signal-free” approach to dendroclimatic standardisation. Debdrochronologia 26:71–86

    Article  Google Scholar 

  • Moberg A, Sonechkin DM, Holmgren K et al (2005) Highly variable Northern Hemisphere temperatures reconstructed from low and high-resolution proxy data. Nature 433:613–617

    Article  Google Scholar 

  • National Research Council (2006) Surface temperature reconstructions for the last 2,000 years. National Academic Press, Washington, 145 pp

    Google Scholar 

  • Osborn TJ, Briffa KR (2004) The real color of climate change? Science 306:621–622

    Article  Google Scholar 

  • Osborne C (1991) Statistical calibration: a review. Int Stat Rev 59(3):309–336

    Article  Google Scholar 

  • Raaijmakers JGW, Pieters JPM (1987) Measurement error and ANCOVA: functional and structural relationship approaches. Psychometrika 52(4):521–538

    Article  Google Scholar 

  • Rutherford S, Mann ME, Osborn TJ et al (2005) Proxy-based northern hemisphere surface temperature reconstructions: sensitivity to methodology, predictor network, target season and target domain. J Clim 18:2308–2329

    Article  Google Scholar 

  • Sachs HM, Webb T, III, Clark DR (1977) Paleoecological transfer functions. Annu Rev Earth Planet Sci 5:159–178

    Article  Google Scholar 

  • Smerdon JE, Kaplan A (2007) Comments on “Testing the fidelity of methods used in proxy-based reconstructions of past climate”: the role of the standardization interval. J Clim 20:5666–5670

    Article  Google Scholar 

  • Smerdon JE, González-Rouco JF, Zorita E (2008) Comment on “Robustness of proxy-based climate field reconstruction methods” by Michael E. Mann et al. J Geophys Res Atmospheres 113. doi:10.1029/2007JD009542

    Google Scholar 

  • Thees B, Kutzbach L, Wilmking M, Zorita E (2009) Ein Bewertungsmaß für die amplitudentreue regressive Abbildung von verrauschten Daten im Rahmen einer iterativen “Errors in Variables”—Modellierung (EVM). GKSS Reports 2009/8. GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht, Germany, 20 pp (in German)

  • von Storch H, Zorita E, Jones JM et al (2004) Reconstructing past climate from noisy data. Science 306:679–682

    Article  Google Scholar 

  • von Storch H, Zorita E, González-Rouco F (2008) Assessment of three temperature reconstruction methods in the virtual reality of a climate simulation. Int J Earth Sci. doi:10.1007/s00531-008-0349-5

    Google Scholar 

  • Zorita E (2009) Interactive comment on “Technical note: correcting for signal attenuation from noise: sharpening the focus on past climate” by C. M. Ammann et al. Clim Past Discuss 5:C394–C398

    Google Scholar 

  • Zorita E, González-Rouco F, Legutge S (2003) Testing the Mann et al. (1998) approach to paleoclimate reconstructions in the context of a 1000-yr control simulation with the ECHO-G coupled climate model. J Clim 16:1378–1390

    Article  Google Scholar 

  • Zorita E, González-Rouco F, von Storch H (2007) Comments on “Testing the fidelity of methods used in proxy-based reconstructions of past climate” by Mann et al. J Clim 20:3693–3698

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Kutzbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutzbach, L., Thees, B. & Wilmking, M. Identification of linear relationships from noisy data using errors-in-variables models—relevance for reconstruction of past climate from tree-ring and other proxy information. Climatic Change 105, 155–177 (2011). https://doi.org/10.1007/s10584-010-9877-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-010-9877-7

Keywords