Skip to main content

Advertisement

Log in

The feasibility of low CO2 concentration targets and the role of bio-energy with carbon capture and storage (BECCS)

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

The United Nations Framework Convention on Climate Change (UNFCCC 1992) calls for stabilization of atmospheric greenhouse gas (GHG) concentrations at a level that would prevent dangerous anthropogenic interference with the climate system. We use three global energy system models to investigate the technological and economic attainability of meeting CO2 concentration targets below current levels. Our scenario studies reveal that while energy portfolios from a broad range of energy technologies are needed to attain low concentrations, negative emission technologies—e.g., biomass energy with carbon capture and storage (BECCS)—significantly enhances the possibility to meet low concentration targets (at around 350 ppm CO2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azar C, Rodhe H (1997) Targets for stabilization of atmospheric CO2. Science 276:1818–1819

    Article  Google Scholar 

  • Azar C, Schneider SH (2002) Are the economic costs of stabilizing the atmosphere prohibitive? Ecol Econ 42:73–80

    Article  Google Scholar 

  • Azar C, Lindgren K, Andersson B (2003) Global energy scenarios meeting stringent CO2 constraints—cost effective fuel choices in the transportation sector. Energy Policy 31:961–976

    Article  Google Scholar 

  • Azar C, Lindgren K, Larson E, Möllersten K (2006) Carbon capture and storage from fossil fuels and biomass—costs and potential role in stabilizing the atmosphere. Clim Change 74:47–79

    Article  Google Scholar 

  • Berndes G, Hoogwijk M, Van den Broek R (2003) The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenergy 25:1–28

    Article  Google Scholar 

  • Bouwman AF, Kram T, Klein Goldewijk K (2006) Integrated modelling of global environmental change. Netherlands Environmental Assessment Agency (MNP), Bilthoven, October 2006. Available at http://www.rivm.nl/bibliotheek/rapporten/500110002.pdf

  • De Vries HJM, Van Vuuren DP, Den Elzen MGJ, Janssen MA (2002) The targets image energy model regional (TIMER)—Technical documentation. National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands

  • European Council (2005) Presidency conclusion; 7619/1/05, REV 1, 22nd–23rd March 2005; http://ue.eu.int/ueDocs/cms_Data/docs/pressData/en/ec/84335.pdf

  • Fisher B, Nakicenovic N, Alfsen K, Corfee Morlot J, de la Chesnaye F, Hourcade J-C, Jiang K, Kainuma M, La Rovere E, Matysek A, Rana A, Riahi K, Richels R, Rose S, Van Vuuren D, Warren R, Ambrosi P, Birol F, Bouille D, Clapp C, Eickhout B, Hanaoka T, Mastrandrea MD, Matsuoko Y, O’Neill B, Pitcher H, Rao S, Toth F (2007) Issues related to mitigation in the long-term context. In: Metz B, Davidson O, Bosch P, Dave R, Meyer L (eds) Climate change 2007. Mitigation of climate change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, pp 169–250

    Google Scholar 

  • Graßl H, Kokott J, Kulessa M, Luther J, Nuscheler F, Sauerborn R, Schellnhuber H-J, Schubert R, Schulze E-D (2003) Climate protection strategies for the 21st century: Kyoto and beyond. Report prepared by the German Advisory Council on Global Change (WBGU), Berlin, Germany

  • Hansen JE (2005) A slippery slope: how much global warming constitutes dangerous anthropogenic interference. Clim Change 68:269–279

    Article  Google Scholar 

  • Hoffert MI, Caldeira K, Benford G, Criswell DR, Green C, Herzog H, Jain AK, Kheshgi HS, Lackner KS, Lewis JS, Lightfoot HD, Manheimer W, Mankins JC, Mauel ME, Perkins LJ, Schlesinger ME, Volk T, Wigley TML (2002) Advanced technology paths to global climate stability: energy for a greenhouse planet. Science 298:981–987

    Article  Google Scholar 

  • IPCC (2005) Special report on CO2 capture and storage. Cambridge University Press, Cambridge

    Google Scholar 

  • Keith D (2009) Why capture CO2 from the atmosphere. Science 325:1654–1655

    Article  Google Scholar 

  • Knopf B, Edenhofer O, Barker T, Baumstark L, Criqui P, Held A, Isaac M, Jakob M, Jochem E, Kitous A, Kypreos S, Leimbach M, Magné B, Mima S, Schade W, Scrieciu S, Turton H, van Vuuren DP (2009) The economics of low stabilisation: implications for technological change and policy. In: Hulme M, Neufeld H (eds) Making climate work for us

  • Leemans R, van Amstel A, Battjes C, Kreileman E, Toet S (1996) The land cover and carbon cycle consequences of large-scale utilizations of biomass as an energy source. Glob Environ Change 6(4):335–357

    Article  Google Scholar 

  • Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008) Tipping elements in the Earth’s climate system. Proc Natl Acad Sci U S A 105:1786–1793

    Article  Google Scholar 

  • MEF (2009) Declaration on energy and climate. Major Economies Forum, L’Aquila, Italy

  • Meinshausen M, Hare B, Wigley TML, van Vuuren DP, den Elzen MGJ, Swart R (2006) Multi-gas emission pathways to meet arbitrary climate targets. Clim Change 75:151–194

    Article  Google Scholar 

  • Nakicenovic N, Swart R (eds) (2000) Special report on emissions scenarios. Cambridge University Press, Cambridge, ISBN 0521804930, pp 612

    Google Scholar 

  • O’Neill BC, Oppenheimer M (2004) Climate change impacts are sensitive to the concentration stabilization path. PNAS 101:16411–16416

    Article  Google Scholar 

  • Obersteiner M, Azar Ch, Kauppi P, Möllersten K, Moreira J, Nilsson S, Read P, Riahi K, Schlamadinger B, Yamagata Y, Yan J, van Ypersele J-P (2001) Managing climate risk. Science 294(5543):786–787

    Article  Google Scholar 

  • Pacala S, Socolow R (2004) Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305:968–972

    Article  Google Scholar 

  • Persson UM, Azar C (2010) Preserving the world’s tropical forests: a price on carbon may not do. Environ Sci Technol 44:210–215

    Article  Google Scholar 

  • Rao S, Riahi K (2006) The role of non-CO2 greenhouse gases in climate change mitigation: long-term scenarios for the 21st century. Energy J 27:177–200

    Google Scholar 

  • Riahi K, Grubler A, Nakicenovic N (2007) Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol Forecast Soc Change 74:887–935

    Article  Google Scholar 

  • Rockström J, Steffen W, Noone K, Persson Ã, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, De Wit CA, Hughes T, Van Der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe operating space for humanity. Nature 461:472–475

    Article  Google Scholar 

  • Sandén B, Azar C (2005) Near term technology policies for long term climate targets. Energy Policy 33:1557–1576

    Article  Google Scholar 

  • Schrattenholzer L, Miketa A, Riahi K, Roehrl RA, Strubegger M (2004) Achieving a sustainable global energy system. Edward Elgar Publishing, Cheltenham

    Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Tun-Hsiang Y (2008) Use ofU.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238–1240

    Article  Google Scholar 

  • Tilman D et al (2009) Beneficial biofuels—the food energy environment trilemma. Science 325:270–271

    Article  Google Scholar 

  • UNFCCC (1992) United Nations framework convention on climate change. http://www.unfccc.int/resources

  • van Vuuren DP, Den Elzen MGJ, Lucas P, Eickhout BE, Strengers BJ, Van Ruijven B, Wonink S, Van Houdt R (2007) Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim Change 81:119–159

    Article  Google Scholar 

  • van Vuuren DP, van Vliet J, Stehfest E (2009) Future bio-energy potential under various natural constraints. Energy Policy 37:4220–4230

    Article  Google Scholar 

  • Wigley TML, Richels R, Edmonds J (1996) Economics and environmental choices in the stabilization of atmospheric CO2 concentrations. Nature 379:240–243

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Azar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azar, C., Lindgren, K., Obersteiner, M. et al. The feasibility of low CO2 concentration targets and the role of bio-energy with carbon capture and storage (BECCS). Climatic Change 100, 195–202 (2010). https://doi.org/10.1007/s10584-010-9832-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-010-9832-7

Keywords

Navigation