Climatic Change

, Volume 101, Issue 1–2, pp 143–168 | Cite as

European temperature records of the past five centuries based on documentary/instrumental information compared to climate simulations

  • Eduardo ZoritaEmail author
  • Anders Moberg
  • Lotta Leijonhufvud
  • Rob Wilson
  • Rudolf Brázdil
  • Petr Dobrovolný
  • Jürg Luterbacher
  • Reinhard Böhm
  • Christian Pfister
  • Dirk Riemann
  • Rüdiger Glaser
  • Johan Söderberg
  • Fidel González-Rouco


Two European temperature reconstructions for the past half-millennium, January-to-April air temperature for Stockholm (Sweden) and seasonal temperature for a Central European region, both derived from the analysis of documentary sources and long instrumental records, are compared with the output of climate simulations with the model ECHO-G. The analysis is complemented by comparisons with the long (early)-instrumental record of Central England Temperature (CET). Both approaches to study past climates (simulations and reconstructions) are burdened with uncertainties. The main objective of this comparative analysis is to identify robust features and weaknesses in each method which may help to improve models and reconstruction methods. The results indicate a general agreement between simulations obtained with temporally changing external forcings and the reconstructed Stockholm and CET records for the multi-centennial temperature trend over the recent centuries, which is not reproduced in a control simulation. This trend is likely due to the long-term change in external forcing. Additionally, the Stockholm reconstruction and the CET record also show a clear multi-decadal warm episode peaking around AD 1730, which is absent in the simulations. Neither the reconstruction uncertainties nor the model internal climate variability can easily explain this difference. Regarding the interannual variability, the Stockholm series displays, in some periods, higher amplitudes than the simulations but these differences are within the statistical uncertainty and further decrease if output from a regional model driven by the global model is used. The long-term trend of the CET series agrees less well with the simulations. The reconstructed temperature displays, for all seasons, a smaller difference between the present climate and past centuries than is seen in the simulations. Possible reasons for these differences may be related to a limitation of the traditional ‘indexing’ technique for converting documentary evidence to temperature values to capture long-term climate changes, because the documents often reflect temperatures relative to the contemporary authors’ own perception of what constituted ‘normal’ conditions. By contrast, the amplitude of the simulated and reconstructed inter-annual variability agrees rather well.


Regional Climate Model Internal Variability Temperature Reconstruction Climate Reconstruction Documentary Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa K, Jones PD, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin J-M, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) HISTALP—historical instrumental climatological surface time series of the greater Alpine region 1760–2003. Int J Climatol 27:17–46CrossRefGoogle Scholar
  2. Bader DC, Covey C, Gutowski WJ, Held IM, Kunkel K, Miller RL, Tokmakian RT, Zhang MH (2008) Climate models: an assessment of strengths and limitations. Synthesis and assessment products 3.1 report by the U.S. In: Climate change science program and the subcommittee on global change research, Washington DC, 133 ppGoogle Scholar
  3. Bengtsson L, Hodges KI, Roeckner E, Brokopf R (2007) On the natural variability of the pre-industrial European climate. Clim Dyn 27:743–760CrossRefGoogle Scholar
  4. Böhm R, Jones PD, Hiebl J, Frank D, Brunetti M, Maugeri M (2009) The early instrumental warm-bias: a solution for long central European temperature series 1760–2007. Clim Change. doi: 10.1007/s10584-009-9649-4 Google Scholar
  5. Brázdil R, Pfister C, Wanner H, von Storch H, Luterbacher J (2005) Historical climatology in Europe—the state of the art. Clim Change 70:363–430CrossRefGoogle Scholar
  6. Büntgen U, Frank DC, Nievergelt D, Esper J (2006) Summer temperature variations in the European Alps: AD 755–2004. J Climate 19:5606–5623CrossRefGoogle Scholar
  7. Casty C, Handorf D, Raible CC, González-Rouco JF, Weisheimer A, Xoplaki E, Luterbacher J, Dethloff K, Wanner H (2005) Recurrent climate winter regimes in reconstructed and modelled 500 hPa geopotential height fields over the North Atlantic/European sector 1659–1990. Clim Dyn 24:809–822CrossRefGoogle Scholar
  8. Casty C, Raible CC, Stocker TF, Wanner H, Luterbacher J (2007) A European pattern climatology 1766–2000. Clim Dyn 29:791–805CrossRefGoogle Scholar
  9. Chuine I, Yiou P, Viovy N, Seguin B, Daux V, Le Roy Ladurie E (2004) Grape ripening as a past climate indicator. Nature 432:289–290CrossRefGoogle Scholar
  10. Cook ER, Briffa KR, Meko DM, Graybill DA, Funkhouser G (1995) The ‘segment length curse’ in long tree-ring chronology development for palaeoclimatic studies. Holocene 5:229–237CrossRefGoogle Scholar
  11. Cook E, D’Arrigo R, Mann ME (2002) A well verified multiproxy reconstruction of the winter North Atlantic Oscillation index since A.D. 1400. J Climate 15:1754–1764CrossRefGoogle Scholar
  12. Dobrovolný P, Brázdil R, H, Kotyza O, Macková J, Halíčková M (2009a) A standard paleoclimatological approach to temperature reconstruction in historical climatology: an example from the Czech Republic, AD 1718–2007. Int J Climatol 29:1478–1492CrossRefGoogle Scholar
  13. Dobrovolný P, Moberg A, Brázdil R, Pfister C, Glaser R, Wilson RJS, van Engelen A, Limanowka D, Kiss A, Halíčková M, Macková J, Riemann D, Luterbacher J, Böhm R (2009b) Monthly and seasonal temperature reconstructions for Central Europe derived from documentary evidence and instrumental records since AD 1500. Clim Change. doi: 10.1007/s10584-009-9724-x Google Scholar
  14. Esper J, Wilson RJS, Frank DC, Moberg A, Wanner H, Luterbacher J (2005) Climate: past ranges and future changes. Quat Sci Rev 24:2164–2166CrossRefGoogle Scholar
  15. Fischer EM, Luterbacher J, Zorita E, Tett SFB, Casty C, Wanner H (2007) European climate response to tropical volcanic eruptions over the past half millennium. Geophys Res Lett 34:L05707. doi: 10.1029/2006GL027992 CrossRefGoogle Scholar
  16. Foukal P, North G, Wigley T (2004) A stellar view on solar variations and climate. Science 306:68–69CrossRefGoogle Scholar
  17. Frank D, Büntgen U, Böhm R, Maugeri M, Esper J (2007a) Warmer early instrumental measurements versus colder reconstructed temperatures: shooting at a moving target. Quat Sci Rev 26:3298–3310CrossRefGoogle Scholar
  18. Frank D, Esper J, Cook ER (2007b) Adjustment for proxy number and coherence in a large-scale temperature reconstruction. Geophys Res Lett 34:L16709. doi: 10.1029/2007GL030571 CrossRefGoogle Scholar
  19. Gagen M, McCarrol D, Hicks S (2006) The Millennium project: European climate of the last millennium. PAGES News 14:4–4Google Scholar
  20. González-Rouco JF, Beltrami H, Zorita E, von Storch H (2006) Simulation and inversion of borehole temperature profiles in surrogate climates: spatial distribution and surface coupling. Geophys Res Lett 33:L01703. doi: 10.1029/2005GL024693 CrossRefGoogle Scholar
  21. Goosse H, Renssen H, Timmermann A, Bradley RS (2005) Internal and forced variability during the last millennium: a model-data intercomparison using ensemble simulations. Quat Sci Rev 24:1345–1360CrossRefGoogle Scholar
  22. Goosse H, Arzel O, Luterbacher J, Mann ME, Renssen H, Riedwyl N, Timmermann A, Xoplaki E, Wanner H (2006) The origin of the European medieval warm period. Clim Past 2:99–113CrossRefGoogle Scholar
  23. Gouirand I, Moberg A, Zorita E (2007) Climate variability in Scandinavia for the past millennium simulated by an atmosphere–ocean general circulation model. Tellus 59A:30–49Google Scholar
  24. Guiot J, Nicault A, Rathgeber C, Edouard J, Guibal F, Pichard G, Till C (2005) Last-millennium summer-temperature variations in western Europe based on proxy data. Holocene 15:489–500CrossRefGoogle Scholar
  25. Jansen E et al (2007) Paleoclimate. In: Solomon S et al (eds) Climate change 2007: the physical basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 433–497Google Scholar
  26. Jones PD (1999) Classics in physical geography revisited. Manley, G. 1974: Central England temperatures: monthly means 1659–1973. Prog Phys Geogr 23:425–428CrossRefGoogle Scholar
  27. Jones PD, Briffa KR (2006) Unusual climate in northwestern Europe during the period 1730 to 1745 based on instrumental and documentary data. Clim Change 79:361–379CrossRefGoogle Scholar
  28. Jones PD, Briffa KR, Osborn TJ (2003) Changes in the Northern Hemisphere annual cycle: implications for paleoclimatology. J Geophys Res 108:4588. doi: 10.1029/2003JD003695 CrossRefGoogle Scholar
  29. Jones PD et al (2009) High-resolution paleoclimatology of the last millennium: a review of current status and future prospects. Holocene 19:3–49CrossRefGoogle Scholar
  30. Jones PD, Mann ME (2004) Climate over past millennia. Rev Geophys 42:RG2002CrossRefGoogle Scholar
  31. Kjellström E, Bärring L, Gollvik S, Hansson U, Jones C, Samuelsson P, Rummukainen M,Ullerstig A, Willén U, Wyser K (2005) A 140-year simulation of European climate with the new version of the Rossby Centre regional atmospheric climate model (RCA3). Reports Meteorology and Climatology 108, SMHI, NorrköpingGoogle Scholar
  32. Legutke S, Voss R (1999) The Hamburg atmosphere–ocean coupled model circulation model ECHO-G’. Technical Report No. 18. German Climate Computing Centre (DKRZ), Hamburg, 62 ppGoogle Scholar
  33. Leijonhufvud L, Wilson R, Moberg A (2008) Documentary data provide evidence of Stockholm average winter to spring temperatures in the eighteenth and nineteenth centuries. Holocene 18:333–343. doi: 10.1177/0959683608086770 CrossRefGoogle Scholar
  34. Leijonhufvud L, Wilson R, Moberg A, Söderberg J, Retsö D, Söderlind U (2009) Five centuries of winter/spring temperatures in Stockholm reconstructed from documentary evidence and instrumental observations. Clim Change. doi: 10.1007/s10584-009-9650-y Google Scholar
  35. Luterbacher J et al (2006) Mediterranean climate variability over the last centuries: a review. In: Lionello P, Malanotte-Rizzoli P, Boscolo R (eds) The Mediterranean climate: an overview of the main characteristics and issues. Elsevier, Amsterdam, pp 27–148Google Scholar
  36. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends and extremes since 1500. Science 303:1499–1503CrossRefGoogle Scholar
  37. Luterbacher J, Liniger MA, Menzel A, Estrella N, Della-Marta PM, Pfister C, Rutishauser T, Xoplaki E (2007) The exceptional European warmth of Autumn 2006 and Winter 2007: historical context, the underlying dynamics and its phenological impacts. Geophys Res Lett 34:L12704CrossRefGoogle Scholar
  38. Luterbacher J, Schmutz C, Gyalistras D, Xoplaki E, Wanner H (1999) Reconstructions of monthly NAO and EU indices back to A.D. 1675. Geophys Res Lett 26:2745–2748CrossRefGoogle Scholar
  39. Luterbacher et al (2009) Circulation dynamics and influence on European and Mediterranean winter climate over the past half millennium: results and insights from instrumental data, documentary proxy evidence and coupled climate models. Clim Change. doi: 10.1007/s10584-009-9782-0 Google Scholar
  40. Luterbacher J, Xoplaki E, Küttel M, Zorita E, González-Rouco FJ, Jones PD, Stössel M, Rutishauser T, Wanner H, Wibig J, Przybylak R (2010) Climate change in Poland in the past centuries and its relationship to European climate: evidence from reconstructions and coupled climate models. In: Przybylak R et al (eds) The Polish climate in the European context: an historical overview, pp 3–39. Springer, Berlin. doi: 10.1007/978-90-481-3167-9_1
  41. Manley G (1953) The mean temperature of Central England, 1698 to 1952. Q J R Meteorol Soc 79:242–261CrossRefGoogle Scholar
  42. Manley G (1974) Central England temperatures: monthly means 1659 to 1973. Q J R Meteorol Soc 100:389–405CrossRefGoogle Scholar
  43. Meeh GA, Stocker TF , Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG , Weaver A, Zhao Z-C (2007) Global Climate Projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 747–845Google Scholar
  44. Meier N, Rutishauser T, Pfister C, Wanner H, Luterbacher J (2007) Grape harvest dates as a proxy for Swiss April to August temperature reconstructions back to AD 1480. Geophys Res Lett 34:L20705. doi: 10.1029/2007GL031381 CrossRefGoogle Scholar
  45. Miller RL, Schmidt GA, Shindell DT (2006) Forced annular variations in the 20th century Intergovernmental Panel on Climate Change fourth assessment report models. J Geophys Res 111:D181101. doi: 10.1029/2005JD006323 Google Scholar
  46. Min SK, Legutke S, Hense A, Kwon W (2005) Internal variability in a 1000-year control simulation with the coupled climate model ECHO-G. I. Near surface temperature, precipitation, and mean sea-level pressure. Tellus 57A:605–621Google Scholar
  47. Mironov DV (2008) Parameterization of lakes in numerical weather prediction. Description of a lake model. COSMO Technical Report, No. 11, Deutscher Wetterdienst, Offenbach am Main, Germany, 41 ppGoogle Scholar
  48. Moberg A, Bergström H, Ruiz Krigsman J, Svanered O (2002) Daily air temperature and pressure series for Stockholm (1756–1998). Clim Change 53:171–212CrossRefGoogle Scholar
  49. Moberg A, Alexandersson H, Bergström H, Jones PD (2003) Were Southern Swedish summer temperatures before 1860 as warm as measured? Int J Climatol 23:1495–1521CrossRefGoogle Scholar
  50. Moberg A, Tuomenvirta H, Nordli Ø (2005) Recent climatic trends. In: Seppälä M (ed) Physical geography of Fennoscandia. Oxford Regional Environments Series. Oxford University Press, Oxford, pp 113–133Google Scholar
  51. Moberg A, Gouirand I, Schoning K, Wohlfarth B, Kjellström E, Rummukainen M, de Jong R, Linderholm H, Zorita E (2006) Climate in Sweden during the past millennium—evidence from proxy data, instrumental data and model simulations. SKB technical report TR-06-35. Swedish Nuclear Fuel and Waste Management Co., Stockholm, 87 ppGoogle Scholar
  52. Osborn TJ (2004) Simulating the winter North Atlantic oscillation: the roles of internal variability and greenhouse gas forcing. Clim Dyn 22:605–623CrossRefGoogle Scholar
  53. Osborn TJ, Briffa KB, Jones PD (1997) Adjusting variance for sample size in tree-ring chronologies and other regional mean timeseries. Dendrochronologia 15:89–99Google Scholar
  54. Parker DE, Horton EB (2005) Uncertainties in Central England temperature 1878–2003 and some improvements to the maximum and minimum series. Int J Climatol 25:1173–1188CrossRefGoogle Scholar
  55. Parker DE, Legg TP, Folland CK (1992) A new daily Central England temperature series, 1772–1991. Int J Climatol 12:317–342CrossRefGoogle Scholar
  56. Pauling A, Luterbacher J, Casty C, Wanner H (2006) Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation. Clim Dyn 26:387–405CrossRefGoogle Scholar
  57. Raible CC, Casty C, Luterbacher J, Pauling A, Esper J, Frank DC, Büntgen U, Roesch AC, Tschuck P, Wild M, Vidale P-L, Schär C, Wanner H (2006) Climate variability—observations, reconstructions and model simulations for the Atlantic-European and Alpine region from 1500–2100 AD. Clim Change 79:9–29CrossRefGoogle Scholar
  58. Ramstein G, Kageyama M, Guiot J, Wu H, Hély C, Krinner G, Brewer S (2007) How cold was Europe at the Last Glacial Maximum? A synthesis of the progress acheived since the first PMIP model-data comparison. Clim Past 3:331–339CrossRefGoogle Scholar
  59. Rutishauser T, Luterbacher J, Defila C, Frank D, Wanner H (2008) Swiss spring plant phenology 2007: extremes, a multi-century perspective and changes in temperature sensitivity. Geophys Res Lett 35:L05703. doi: 10.1029/2007GL032545 CrossRefGoogle Scholar
  60. Schmutz C, Luterbacher J, Gyalistras D, Xoplaki E, Wanner H (2000) Can we trust proxy-based NAO index reconstructions? Geophys Res Lett 27:1135–1138CrossRefGoogle Scholar
  61. Shindell DT, Schmidt GA, Mann ME, Rind D, Wapple A (2001) Solar forcing of regional climate change during the Maunder Minimum. Science 294:2149–2152CrossRefGoogle Scholar
  62. Trouet V, Esper J, Graham N, Baker A, Scourse JD, Frank D (2009) Persistent positive North Atlantic Oscillation mode dominated the medieval climate anomaly. Science 324:78–80CrossRefGoogle Scholar
  63. Wohlfahrt J, Harrison SP, Braconnot P, Hewitt CD, Kitoh A, Mikolajewicz U, Otto-Bliesner BL, Weber S (2008) Evaluation of coupled ocean–atmosphere simulations of the mid-Holocene using palaeovegetation data from the northern hemisphere extratropics. Clim Dyn 31:871–890. doi: 10.1007/s00382-008-0415-5 CrossRefGoogle Scholar
  64. Wagner S, Zorita E (2005) The influence of volcanic, solar and CO2 forcing on the temperatures in the Dalton minimum (1790–1830): a model study. Clim Dyn 25:205–218CrossRefGoogle Scholar
  65. Wang Y-M, Lean JL, Sheeley NR (2005) Modeling the Sun’s magnetic field and irradiance since 1713. Astrophys J 625:522–538CrossRefGoogle Scholar
  66. Wanner H, Beer J, Bütikofer J, Crowley TJ, Cubasch U, Flückiger J, Goosse H, Grosjean M, Joos F, Kaplan JO, Küttel M, Müller SA, Prentice C, Solomina O, Stocker TF, Tarasov P, Wagner M, Widmann M (2008) Mid- to Late Holocene climate change: an overview. Quat Sci Rev 27:1791–1828CrossRefGoogle Scholar
  67. Wilson R, Tudhope A, Brohan P, Briffa K, Osborn, Tett SFB (2006) Two-hundred-fifty years of reconstructed and modeled tropical temperature. J Geophys Res 111:C10007. doi: 10.1029/2005JCC003188 CrossRefGoogle Scholar
  68. Xoplaki E, Luterbacher J, Paeth H, Dietrich D, Steiner N, Grosjean M (2005) European spring and autumn temperature variability and change of extremes over the last millennium. Geophys Res Lett 32:L15713. doi: 10.1029/2005GL023424 CrossRefGoogle Scholar
  69. Yoshimori M, Stocker TF, Raible CC, Renold M (2005) Externally forced and internal variability in ensemble climate simulations of the Maunder Minimum. J Climate 18:4253–4270CrossRefGoogle Scholar
  70. Zorita E, González-Rouco F, Legutke S (2003) Testing the Mann et al. (1998) approach to paleoclimate reconstructions in the context of a 1000-yr control simulation with the ECHO-G coupled climate model. J Climate 16:1378–1390CrossRefGoogle Scholar
  71. Zorita E, González-Rouco F, von Storch H, Montavez JP, Valero F (2005) Natural and anthropogenic modes of surface temperature variations in the last thousand years. Geophys Res Lett 32:L08707CrossRefGoogle Scholar
  72. Zorita E, González-Rouco F, von Storch H (2007) Comments on ‘Testing the fidelity of methods to used in proxy-based reconstructions of past climate’. J Climate 20:3693–3698CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Eduardo Zorita
    • 1
    Email author
  • Anders Moberg
    • 2
  • Lotta Leijonhufvud
    • 2
  • Rob Wilson
    • 3
  • Rudolf Brázdil
    • 4
  • Petr Dobrovolný
    • 4
  • Jürg Luterbacher
    • 5
  • Reinhard Böhm
    • 6
  • Christian Pfister
    • 7
  • Dirk Riemann
    • 8
  • Rüdiger Glaser
    • 8
  • Johan Söderberg
    • 9
  • Fidel González-Rouco
    • 10
  1. 1.GKSS Research CentreGeesthachtGermany
  2. 2.Department of Physical Geography and Quaternary GeologyStockholm UniversityStockholmSweden
  3. 3.School of Geography & GeosciencesUniversity of St AndrewsSt AndrewsScotland
  4. 4.Institute of GeographyMasaryk UniversityBrnoCzech Republic
  5. 5.Department of Geography; Climatology, Climate Dynamics and Climate ChangeJustus-Liebig UniversityGiessenGermany
  6. 6.Zentralanstalt für Meteorologie und GeodynamikViennaAustria
  7. 7.Oeschger Centre for Climate Change Research and Institute of HistoryUniversity of BernBernSwitzerland
  8. 8.Institute of Physical GeographyUniversity of FreiburgFreiburgGermany
  9. 9.Department of Economic HistoryStockholm UniversityStockholmSweden
  10. 10.Universidad Complutense de MadridMadridSpain

Personalised recommendations