Scenarios with MIT integrated global systems model: significant global warming regardless of different approaches

Abstract

A wide variety of scenarios for future development have played significant roles in climate policy discussions. This paper presents projections of greenhouse gas (GHG) concentrations, sea level rise due to thermal expansion and glacial melt, oceanic acidity, and global mean temperature increases computed with the MIT Integrated Global Systems Model (IGSM) using scenarios for twenty-first century emissions developed by three different groups: intergovernmental (represented by the Intergovernmental Panel on Climate Change), government (represented by the U.S. government Climate Change Science Program) and industry (represented by Royal Dutch Shell plc). In all these scenarios the climate system undergoes substantial changes. By 2100, the CO2 concentration ranges from 470 to 1020 ppm compared to a 2000 level of 365 ppm, the CO2-equivalent concentration of all greenhouse gases ranges from 550 to 1780 ppm in comparison to a 2000 level of 415 ppm, oceanic acidity changes from a current pH of around 8 to a range from 7.63 to 7.91, in comparison to a pH change from a preindustrial level by 0.1 unit. The global mean temperature increases by 1.8 to 7.0°C relative to 2000. Such increases will require considerable adaptation of many human systems and will leave some aspects of the earth’s environment irreversibly changed. Thus, the remarkable aspect of these different approaches to scenario development is not the differences in detail and philosophy but rather the similar picture they paint of a world at risk from climate change even if there is substantial effort to reduce emissions.

This is a preview of subscription content, log in to check access.

References

  1. Asadoorian M, Sarofim M, Reilly J, Paltsev S, Forest C (2006) Historical anthropogenic emissions inventories for greenhouse gases and major criteria pollutants. MIT Joint Program for the Science and Policy of Global Change, Technical Note 8, Cambridge

  2. Doney S, Fabry V, Feely R, Kleypas J (2009) Ocean acidification: the other CO2 problem. Annual Review of Marine Science 1:169–192

    Article  Google Scholar 

  3. Forest C, Stone PH, Sokolov AP (2008) Constraining climate model parameters from observed 20th century changes. Tellus A60(5):911–920

    Article  Google Scholar 

  4. IPCC [Intergovernmental Panel on Climate Change] (2001) Climate change 2001: the scientific basis. In: Houghton J et al (eds) Contribution of working group I to the third assessment report of the intergovenmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  5. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AG, Zhao Z (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  6. Moss R, Babiker M, Brinkman S, Calvo E, Carter T, Edmonds J, Elgizouli I, Emori S, Erda L, Hibbard K, Jones R, Kainuma M, Kelleher J, Lamarque J, Manning M, Matthews B, Meehl J, Meyer L, Mitchel J, Nakicenovic N, O’Neill B, Pichs R, Riahi K, Rose S, Runci P, Stouffer R, van Vuuren D, Weyant J, Wilbanks T, van Ypersele J, Jurek M (2008) Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies. Intergovernmental Panel on Climate Change, Geneva

  7. Nakicenovic N, Alcamo J, Davis B, de Vries B, Fenhann J, Gan S, Gregory K, Grubler A, Jung T, Kram T, Rovere E, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart S, van Rooijen N, Victor N, Dadi Z (2000) Special report on emissions scenarios. Cambridge University Press, Cambridge

    Google Scholar 

  8. Paltsev S, Reilly J, Jacoby HD, Eckaus R, McFarland J, Sarofim M, Asadoorian M, Babiker M (2005) The MIT Emissions Prediction and Policy Analysis (EPPA) model: Version 4. MIT Joint Program for the Science and Policy of Global Change, Report 125, Cambridge

  9. Plattner G, Knutti R, Joos F, Stocker TF, Brovkin V, Driesschaert E, Dutkiewicz S, Eby N, Edwards NR, Fichefet T, Jones C, Loutre MF, Matthews HD, Mouchet A, Muller SA, Nawrath S, Sokolov A, Strassmann K, Weaver A (2008) Long-term projections of climate change commitment. J Clim 21:2721–2751

    Article  Google Scholar 

  10. Prinn R, Jacoby HD, Sokolov AP, Want C, Xiao X, Yang Z, Eckaus RS, Stone P, Ellerman AD, Melillo J, Fitzmaurice J, Kicklighter D, Holian G, Liu Y (1999) Integrated global system for climate policy assessment: feedback and sensitivity studies. Clim Change 41:469–546

    Article  Google Scholar 

  11. Royal Society (2005) Ocean acidification due to increasing atmospheric carbon dioxide. The Royal Society, London

    Google Scholar 

  12. Sabine CL, Heiman M, Artaxo P, Bakker D, Chen C, Field C, Gruber N, LeQuere C, Prinn R, Richey J, Romero-Lankao P, Sathaye J, Valentini R (2004) Current status and past trend of the carbon cycle. In Field C, Raupach M (eds) The global carbon cycle: SCOPE Project 62. Island, Washington, pp 17–44

    Google Scholar 

  13. Sarofim M, Forest C, Reiner D, Reilly J (2005) Stabilization and global climate change. Glob Planet Change 47:266–272

    Article  Google Scholar 

  14. Shell (2008) Shell energy scenarios to 2050. Shell International BV, The Hague, The Netherlands. http://www.shell.com/scenarios

  15. Sokolov AP, Schlosser CA, Dutkiewicz S, Paltsev S, Kicklighter D, Jacoby HD, Prinn R, Forest C, Reilly J, Wang C, Felzer B, Sarofim M, Scott J, Stone PH, Melillo J, Cohen J (2005) The MIT Integrated Global System Model (IGSM) Version 2: model description and baseline evaluation. MIT Joint Program for the Science and Policy of Global Change, Report 124, Cambridge

  16. Sokolov AP, Kicklighter D, Melillo J, Felzer B, Schlosser CA, Cronin T (2008) Consequences of considering carbon/nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle. J Clim 21(15):3776–3796

    Article  Google Scholar 

  17. Sokolov AP, Stone PH, Forest CE, Prinn R, Sarofim MC, Webster M, Paltsev S, Schlosser CA, Kicklighter D, Dutkiewicz S, Reilly J, Wang C, Felzer B, Jacoby HD (2009) Probablistic forecast for 21st century climate based on uncertainties in emissions (without policy) and climate parameters. J Clim 22(19):5175–5204

    Article  Google Scholar 

  18. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  19. US CCSP [United States Climate Change Science Program] (2007) CCSP synthesis and assessment product 2.1, part a: scenarios of greenhouse gas emissions and atmospheric concentrations. In: Clarke L et al. (eds) US Climate Change Science Program. Department of Energy, Washington

    Google Scholar 

  20. Van Vuuren D, Meinshausen M, Plattner G-K, Strassmann K, Smith S, Wigley T, Raper S, Riahi K, de la Chesnaye F, den Elzen M, Fujino J, Jiang K, Nakicenovic N, Paltsev S, Reilly J (2008) Temperature increase of 21st century mitigation scenarios. Proc Natl Acad Sci USA 105(40):15258–15262

    Article  Google Scholar 

  21. Webster M, Sokolov A, Reilly J, Forest C, Paltsev S, Schlosser A, Wang C, Kicklighter D, Sarofim M, Melillo J, Prinn R, Jacoby H (2009) Analysis of climate policy targets under uncertainty. MIT Joint Program for the Science and Policy of Global Change, Report 180, Cambridge

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sergey Paltsev.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Prinn, R., Paltsev, S., Sokolov, A. et al. Scenarios with MIT integrated global systems model: significant global warming regardless of different approaches. Climatic Change 104, 515–537 (2011). https://doi.org/10.1007/s10584-009-9792-y

Download citation

Keywords

  • Climate Policy
  • Oceanic Acidity
  • SRES Scenario
  • Stabilization Scenario
  • Terrestrial Ecosystem Model