Climatic Change

, Volume 104, Issue 2, pp 255–285 | Cite as

How well do integrated assessment models simulate climate change?

  • Detlef P. van Vuuren
  • Jason Lowe
  • Elke Stehfest
  • Laila Gohar
  • Andries F. Hof
  • Chris Hope
  • Rachel Warren
  • Malte Meinshausen
  • Gian-Kasper Plattner
Article

Abstract

Integrated assessment models (IAMs) are regularly used to evaluate different policies of future emissions reductions. Since the global costs associated with these policies are immense, it is vital that the uncertainties in IAMs are quantified and understood. We first demonstrate the significant spread in the climate system and carbon cycle components of several contemporary IAMs. We then examine these components in more detail to understand the causes of differences, comparing the results with more complex climate models and earth system models (ESMs), where available. Our results show that in most cases the outcomes of IAMs are within the range of the outcomes of complex models, but differences are large enough to matter for policy advice. There are areas where IAMs would benefit from improvements (e.g. climate sensitivity, inertia in climate response, carbon cycle feedbacks). In some cases, additional climate model experiments are needed to be able to tune some of these improvements. This will require better communication between the IAM and ESM development communities.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bouwman L, Kram T, Klein-Goldewijk K (2006) Integrated modelling of global environmental change. An overview of IMAGE 2.4. The Netherlands Environmental Assessment Agency, BilthovenGoogle Scholar
  2. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:180–184Google Scholar
  3. den Elzen MGJ, Van Vuuren DP (2007) Peaking profiles for achieving long-term temperature targets with more likelihood at lower costs. Proc Natl Acad Sci U S A 104:17931–17936CrossRefGoogle Scholar
  4. Dufresne J-L, Friedlingstein P, Berthelot M, Bopp L, Ciais P, Fairhead L, Monfray P (2002) Effects of climate change due to CO2 increase on land and ocean carbon uptake. Geophys Res Lett 29:1405CrossRefGoogle Scholar
  5. Edmonds JA, Clarke J, Dooley J, Kim SH, Smith SJ (2004) Modelling greenhouse gas energy technology responses to climate change. Energy 29:1529–1536CrossRefGoogle Scholar
  6. Eickhout B, Den Elzen MG, Kreileman GJJ (2004) The atmosphere-ocean system of IMAGE 2.2. National Institute for Public Health and the Environment, BilthovenGoogle Scholar
  7. Frame DJ, Booth BBB, Kettleborough JA, Stainforth DA, Gregory JM, Collins M, Allan MR (2005) Constraining climate forecasts: the role of prior assumptions. Geophys Res Lett 32:L09702CrossRefGoogle Scholar
  8. Friedlingstein P (2008) A steep road to climate stabilization. Nature 451:297–298CrossRefGoogle Scholar
  9. Friedlingstein P, Bopp L, Ciais P, Dufresne J-L, Fairhead L, LeTreut H, Monfray P, Orr J (2001) Positive feedback between future climate change and the carbon cycle. Geophys Res Lett 28:1543–1546CrossRefGoogle Scholar
  10. Friedlingstein P, Cox P, Betts R, Bopp I, Von bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19:3337–3353CrossRefGoogle Scholar
  11. Füssel HM (2007) Methodological and empirical flaws in the design and application of simple climate-economy models. Clim Change 81:161–185CrossRefGoogle Scholar
  12. Goodess CM, Hanson C, Hulme M, Osborn TJ (2003) Representing climate and extreme weather events in integrated assessment models: a review of existing methods and options for development. Integr Assess 4:145–171CrossRefGoogle Scholar
  13. Häfele W, Anderer JAM, Nakicenovic N (1981) Energy in a finite world. Ballinger, CambridgeGoogle Scholar
  14. Harremoes P, Turner RK (2001) Methods for integrated assessment. Reg Environ Change 2:57–65Google Scholar
  15. Hof AF, den Elzen MGJ, van Vuuren DP (2008) Analysing the costs and benefits of climate policy: value judgements and scientific uncertainties. Glob Environ Change 18:412–424CrossRefGoogle Scholar
  16. Hooss G, Voss R, Hasselmann K, Joos F (2001) A nonlinear impulse response model of the coupled carbon cycle–climate system (NICCS). Clim Dyn 18:189–202CrossRefGoogle Scholar
  17. Hope C (2005) Integrated assessment models. In: Helm D (ed) Climate change policy. Oxford University Press, OxfordGoogle Scholar
  18. Hope C (2006) The marginal impact of CO2 from PAGE2002: an integrated assessment model incorporating the IPCC’s five reasons for concern. Integr Assess 6:19–56Google Scholar
  19. Huntingford C, Lowe J (2007) “Overshoot” scenarios and climate change. Science 316:829CrossRefGoogle Scholar
  20. Huntingford C, Lowe JA, Booth BBB, Jones CD, Harris GR, Gohar LK, Meir P (2009) Contributions of carbon cycle uncertainty to future climate projection spread. Tellus Ser B Chem Phys Meteorol 61:355–360CrossRefGoogle Scholar
  21. IPCC (2001) Climate change 2001. In: Third assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  22. Joos F, Bruno M, Fink R, Siegenthaler U, Stocker TF, Le Quéré C, Sarmiento JL (1996) An efficient and accurate representation of complex oceanic and biospheric models of anthropogeninic carbon uptake. Tellus 48B:397–417Google Scholar
  23. Joos F, Müller-Fürstenberger G, Stephan G (1999) Correcting the carbon cycle representation: how important is it for the economics of climate change? Environ Model Assess 4:133–140CrossRefGoogle Scholar
  24. Joos F, Prentice C, Sitch S, Meyer R, Hooss G, Plattner G-K, Gerber S, Hasselmann K (2001) Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Glob Biogeochem Cycles 15:891–907CrossRefGoogle Scholar
  25. Lashof DA, Tirpack DA (1989) Policy options for stabilising global climate. US Environmental Protection Agency, WashingtonGoogle Scholar
  26. Leemans R, Eickhout B, Strengers BJ, Bouwman AF, Schaefer M (2002) The consequences for the terrestrial carbon cycle of uncertainties in land use, climate and vegetation responses in the IPCC SRES scenarios. Sci China Ser C 45:126–136Google Scholar
  27. Lowe JA, Hewitt CD, Van Vuuren DP, Johns TC, Stehfest E, Royer J-F, van der Linden PJ (2009a) Will aggressive mitigation of emissions really avoid dangerous climate change? EOS 90:181–188CrossRefGoogle Scholar
  28. Lowe JA, Huntingford C, Raper SCB, Jones CD, Liddicoat SK, Gohar LK (2009b) How difficult is it to recover from dangerous levels of global warming? Environ Res Netw 4:1–9Google Scholar
  29. Maier-Reimer E, Hasselmann K (1987) Transport and storage of carbon dioxide in the ocean: an inorganic ocean circulation carbon cycle model. Clim Dyn 2:63–90CrossRefGoogle Scholar
  30. Manne AS, Richels RG (2005) Merge: an integrated assessment model for global climate change. In: Loulou R, Waaub J-P, Zaccour G (eds) Energy and environment. Springer, New YorkGoogle Scholar
  31. Matthews HD, Caldeira K (2008) Stabilizing climate requires near-zero emissions. Geophys Res Lett 35:L04705CrossRefGoogle Scholar
  32. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  33. Meinshausen M, Raper SCB, Wigley TML (2008) Emulating IPCC AR4 atmosphere-ocean and carbon cycle models for projecting global-mean, hemispheric and land/ocean temperatures: MAGICC 6.0. Atmos Chem Phys Discuss 8:6153–6272CrossRefGoogle Scholar
  34. Meinshausen M, Meinshausen N, Hare B, Raper SCB, Frieler K, Knutti R, Frame DJ, Allen MR (2009) Greenhouse-gas emission targets for limiting global warming to 2°C. Nature 458:1158–1162CrossRefGoogle Scholar
  35. Mignone BK, Socolow RH, Sarmiento JL, Oppenheimer M (2008) Atmospheric stabilization and the timing of carbon mitigation. Clim Change 88:251–265CrossRefGoogle Scholar
  36. Mintzer I (1987) A matter of degrees: the potential for controlling the greenhouse effect. World Resources Institute, WashingtonGoogle Scholar
  37. Moss R, Babiker M, Brinkman S, Calvo E, Carter T, Edmonds J, Elgizouli I, Emori S, Erda L, Hibbard KA, Jones R, Kainuma M, Kelleher J, Lamarque JF, Manning M, Matthews B, Meehl J, Meyer L, Mitchell J, Nakicenovic N, O’Neill B, Pichs R, Riahi K, Rose S, Runci P, Stouffer RJ, van Vuuren D, Weyant J, Wilbanks T, van Ypersele JP, Zurek M (2008) Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies. IPCC Expert Meeting Report on New Scenarios. Intergovernmental Panel on Climate Change, NoordwijkerhoutGoogle Scholar
  38. Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MJ, Collins M, Stainforth DA (2004) Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430:768–772CrossRefGoogle Scholar
  39. Nakicenovic (2000) Special Report on Emissions Scenarios (SRES). Cambridge University Press, Cambridge, UKGoogle Scholar
  40. Nordhaus WD (1979) The efficient use of energy resources. Yale University Press, New HavenGoogle Scholar
  41. Nordhaus WD (2008) A question of balance weighing the options on global warming policies. Yale University Press, New HavenGoogle Scholar
  42. Nordhaus WD, Boyer J (1999) Roll the DICE again: the economics of global warming. Yale University, New HavenGoogle Scholar
  43. Nusbaumer J, Matsumoto K (2008) Climate and carbon cycle changes under the overshoot scenario. Glob Planet Change 62:164–172CrossRefGoogle Scholar
  44. Plattner GK, Knutti R, Joos F, Stocker TF, von Bloh W, Brovkin V, Cameron D, Driesschaert E, Dutkiewicz S, Eby M, Edwards NR, Fichefet T, Hargreaves JC, Jones CD, Loutre MF, Matthews HD, Mouchet A, Müller SA, Nawrath S, Price A, Sokolov A, Strassmann KM, Weaver AJ (2008) Long-term climate commitments projected with climate–carbon cycle models. J Clim 21:2721–2751CrossRefGoogle Scholar
  45. Ramaswamy V (2001) Radiative forcing of climate change. In: JT H, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Cambridge University Press, CambridgeGoogle Scholar
  46. Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  47. Revelle R, Suess H (1957) Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus 9:18CrossRefGoogle Scholar
  48. Riahi K, Gruebler A, Nakicenovic N (2007) Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol Forecast Soc Change 74:887–935CrossRefGoogle Scholar
  49. Rotmans J, de Boois H, Swart RJ (1990) An integrated model for the assessment of the greenhouse effect: the Dutch approach. Clim Change 16:331–356CrossRefGoogle Scholar
  50. Schimel DS (1998) The carbon equation. Nature 393:208–209CrossRefGoogle Scholar
  51. Schneider SH (1997) Integrated assessment modeling of global climate change: transparent rational tool for policy making and opaque screen hiding value-laden assumptions? Environ Model Assess 2:229–249CrossRefGoogle Scholar
  52. Schneider SH, Thompson SL (1981) Atmospheric CO2 and climate: Importance of the transient response. J Geophys Res 86:3135–3147CrossRefGoogle Scholar
  53. Schultz PA, Kasting JF (1997) Optimal reductions in CO2 emissions. Energy Policy 25:491–500CrossRefGoogle Scholar
  54. Shine KP, Derwent RG, Wuebbles DJ, Morcrette J-J (1990) Greenhouse gases and aerosols. In: Houghton JT, Jenkins GJ, Ephraums JJ (eds) Climate change: the IPCC scientific assessment. Cambridge University Press, CambridgeGoogle Scholar
  55. Sitch S, Huntingford C, Gedney N, Levy PE, Lomas M, Piao SL, Betts R, Ciais P, Cox P, Friedlingstein P, Jones CD, Prentice IC, Woodward FI (2008) Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using 5 Dynamic Global Vegetation Models (DGVMs). Glob Chang Biol 14:2015–2039CrossRefGoogle Scholar
  56. Smith SJ, Edmonds JA (2006) The economic implications of carbon cycle uncertainty. Tellus B 58:586–590CrossRefGoogle Scholar
  57. Sokolov AP, Schlosser CA, Dutkiewicz S, Paltsev S, Kicklighter DW, Jacoby HD, Prinn RG, Forest CE, Reilly JM, Wang C, Felzer B, Sarofim MC, Scott J, Stone PH, JM M, Cohen J (2005) The MIT Integrated Global System Model (IGSM) version 2: model description and baseline evaluation. MIT, CambridgeGoogle Scholar
  58. Solomon S, Plattner GP, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci U S A 106:1704–1709CrossRefGoogle Scholar
  59. Tol RSJ (2006) Multi-gas emission reduction for climate change policy: an application of FUND. Energy J 3:235–250Google Scholar
  60. Van der Sluijs JP (2002) Integrated assessment. In: Munn RE, Tolba M (eds) Encyclopaedia of global environmental change—responding to global environmental change. Wiley, London, pp 250–253Google Scholar
  61. Van Vuuren DP, Weyant J, De la Chesnaye F (2006) Multigas scenarios to stabilise radiative forcing. Energy Econ 28:102–120CrossRefGoogle Scholar
  62. Van Vuuren DP, Den Elzen MGJ, Lucas PL, Eickhout B, Strengers BJ, Van Ruijven B, Wonink S, Van Houdt R (2007) Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim Change 81:119–159CrossRefGoogle Scholar
  63. Van Vuuren DP, Meinshausen M, Plattner GK, Joos F, Strassmann KM, Smith SJ, Wigley TML, Raper SCB, Riahi K, De La Chesnaye F, Den Elzen MGJ, Fujino J, Jiang K, Nakicenovic N, Paltsev S, Reilly JM (2008) Temperature increase of 21st century mitigation scenarios. Proc Natl Acad Sci U S A 105:15258–15262CrossRefGoogle Scholar
  64. Warren R, de la Nava Santos S, Arnell NW, Bane M, Barker T, Barton C, Ford R, Füssel H-M, Hankin RKS, Klein R, Linstead C, Kohler J, Mitchell TD, Osborn TJ, Pan H, Raper SCB, Riley G, Schellnhüber HJ, Winne S, Anderson D (2008) Development and illustrative outputs of the Community Integrated Assessment System (CIAS), a multi-institutional modular integrated assessment approach for modelling climate change. Environ Model Softw 23:592–610CrossRefGoogle Scholar
  65. Weyant J, Davidson O, Dowlatabadi H, Edmonds J, Grubb M, Richels R, Rotmans J, Shukla P, Cline W, Fankhauser S, Tol R (1996) Integrated assessment of climate change: an overview and comparison of approaches and results. In: Bruce JP, Lee H, Haites EF (eds) Climate change 1995–economic and social dimensions of climate change. Contribution of working group III to the second assessment report of the intergovernmental panel on climate change (IPCC). Cambridge University Press, CambridgeGoogle Scholar
  66. Weyant JP, de la Chesnaye FC, Blanford GJ (2007) Overview of EMF21: multigas mitigation and climate policy. Energy J #3:1–32Google Scholar
  67. Wigley TML (1993) Balancing the carbon budget. Implications for projections of future carbon dioxide concentration changes. Tellus Ser B Chem Phys Meteorol 45B:409–425CrossRefGoogle Scholar
  68. Wigley TML (2004) Overshoot pathways to CO2 concentration stabilization. Workshop on GHG stabilization scenarios, Tsukuba, Japan, 23 Jan 2004Google Scholar
  69. Wigley TML, Raper SCB (2001) Interpretation of high projections for global-mean warming. Science 293:451–454CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Detlef P. van Vuuren
    • 1
  • Jason Lowe
    • 2
    • 3
  • Elke Stehfest
    • 1
  • Laila Gohar
    • 2
    • 3
  • Andries F. Hof
    • 1
  • Chris Hope
    • 4
  • Rachel Warren
    • 5
  • Malte Meinshausen
    • 6
  • Gian-Kasper Plattner
    • 7
    • 8
  1. 1.Netherlands Environmental Assessment AgencyBilthovenThe Netherlands
  2. 2.MetOffice Hadley CentreExeterUK
  3. 3.Department of MeteorologyThe University of ReadingReadingUK
  4. 4.Judge Business SchoolCambridge UniversityCambridgeUK
  5. 5.Tyndall Centre, School of Environmental SciencesUniversity of East AngliaNorwichUK
  6. 6.Potsdam Institute for Climate Impact AnalysisPotsdamGermany
  7. 7.Environmental Physics, Institute of Biogeochemistry and Pollutant DynamicsETH ZürichZürichSwitzerland
  8. 8.Climate and Environmental Physics, Physics InstituteUniversity of BernBernSwitzerland

Personalised recommendations