Are there basic physical constraints on future anthropogenic emissions of carbon dioxide?

Abstract

Global Circulation Models (GCMs) provide projections for future climate warming using a wide variety of highly sophisticated anthropogenic CO2 emissions scenarios as input, each based on the evolution of four emissions “drivers”: population p, standard of living g, energy productivity (or efficiency) f and energy carbonization c (IPCC WG III 2007). The range of scenarios considered is extremely broad, however, and this is a primary source of forecast uncertainty (Stott and Kettleborough, Nature 416:723–725, 2002). Here, it is shown both theoretically and observationally how the evolution of the human system can be considered from a surprisingly simple thermodynamic perspective in which it is unnecessary to explicitly model two of the emissions drivers: population and standard of living. Specifically, the human system grows through a self-perpetuating feedback loop in which the consumption rate of primary energy resources stays tied to the historical accumulation of global economic production—or p×g—through a time-independent factor of 9.7±0.3 mW per inflation-adjusted 1990 US dollar. This important constraint, and the fact that f and c have historically varied rather slowly, points towards substantially narrowed visions of future emissions scenarios for implementation in GCMs.

References

  1. Alcott B (2005) Jevons’ paradox. Ecol Econ 54:9–21. doi:10.1016/j.ecolecon.2005.03.020

    Article  Google Scholar 

  2. Annual Energy Review (2006) Tech. Rep. DOE/EIA-0384(2006). Department of Energy, Energy Information Administration. www.eia.doe.gov/aer/inter.html

  3. Ayres RU, Ayres LW, Warr B (2003) Exergy, power and work in the US economy, 1900–1998. Energy 28:219–273. doi:10.1016/S0360-5442(02)00089-0

    Article  Google Scholar 

  4. Bettencourt LMA, Lobo J, Helbing D, Kühnert C, West GB (2007) Growth, innovation, scaling, and the pace of life in cities. Proc Natl Acad Sci U S A 104:7301–7306

    Article  Google Scholar 

  5. Brookes LG (1990) The greenhouse effect: the fallacies in the energy efficiency solution. Energy Policy 18:199–201

    Article  Google Scholar 

  6. de Groot SR, Mazur P (1984) Non-equilibrium thermodynamics. Courier Dover, New York

    Google Scholar 

  7. Dimitropoulos J (2007) Energy productivity improvements and the rebound effect: an overview of the state of knowledge. Energy Policy 35:6354–6363

    Article  Google Scholar 

  8. Georgescu-Roegen N (1993) Valuing the Earth: economics, ecology, ethics, chap. The entropy law and the economic problem. MIT, Cambridge, pp 75–88

    Google Scholar 

  9. Herring H, Roy R (2007) Technological innovation, energy efficiency design and the rebound effect. Technovation 27:194–203

    Article  Google Scholar 

  10. IPCC WG III (2007) Climate change 2007: mitigation of climate change. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  11. Jevons WS (1865) The coal question. Macmillan, New York

    Google Scholar 

  12. Job G, Hermann F (2006) Chemical potential—A quantity in search of recognition. Eur J Phys 27:353–371. doi:10.1088/0143-0807/27/2/018

    Article  Google Scholar 

  13. Khazzoom JD (1980) Economic implications of mandated efficiency in standards for household appliances. Energy J 1:21–40

    Google Scholar 

  14. Kleidon A (2004) Beyond Gaia: thermodynamics of life and earth system functioning. Clim Change 66:271–319

    Article  Google Scholar 

  15. Maddison A (2003) The world economy: historical statistics. OECD

  16. Marland G, Boden TA, Andres RJ (2007) Trends: a compendium of data on global change, chap. Global, regional, and national CO2 emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge

  17. Montieth JL (2000) Fundamental equations for growth in uniform stands of vegetation. Agric For Meteorol 104:5–11

    Article  Google Scholar 

  18. Nakicenovic N (2004) Socioeconomic driving forces of emissions scenarios. In: Field CB, Raupach MR (eds) The global carbon cycle. Island, Montague, pp 225–239

  19. Pacala S, Socolow R (2004) Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305:968–972. doi:10.1126/science.1100103

    Article  Google Scholar 

  20. Pielke R Jr, Wigley T, Green C (2008) Dangerous assumptions. Nature 452:531–532

    Article  Google Scholar 

  21. Polimeni JM, Iorgulescu Polimeni R (2006) Jevon’s paradox and the myth of technological liberation. Ecol Complex 3:344–353. doi:10.1016/j.ecocom.2007.02.008

    Article  Google Scholar 

  22. Pruppacher HR, Klett JD (1997) Microphysics of clouds and precipitation, 2nd rev. edn. Kluwer Academic, Dordrecht

    Google Scholar 

  23. Raupach MR, Marland G, Ciais P, Le Quéré C, Canadell JG, Klepper G, Field C (2007) Global and regional drivers of accelerating CO2 emissions. Proc Natl Acad Sci U S A. doi:10.1073/pnas.0700609104

    Google Scholar 

  24. Saunders HD (1992) The Khazzoom-Brookes postulate and neoclassical growth. Energy J 13:131–148

    Google Scholar 

  25. Saunders HD (2000) A view from the macro side: rebound, backfire, and Khazzoom-Brookes. Energy Policy 28:439–449

    Article  Google Scholar 

  26. Schrödinger E (1944) What is life? The physical aspect of the living cell. The University Press, Berkeley

    Google Scholar 

  27. Solow RM (1957) Technical change and the aggregate production function. Rev Econ Stat 39:312–320

    Article  Google Scholar 

  28. Sorrell S (2007) The rebound effect. Tech. rep., UKERC

  29. Stott PA, Kettleborough JA (2002) Origins and estimates of uncertainty in predictions of twenty-first century temperature rise. Nature 416:723–725

    Article  Google Scholar 

  30. Thornley JT, Johnson IR (1990) Plant and crop modelling. Clarendon Press, Clarendon

    Google Scholar 

  31. Trenberth KE (1981) Seasonal variations in global sea level pressure and the total mass of the atmosphere. J Geophys Res 86:5238–5246

    Article  Google Scholar 

  32. United Nations (2007) United Nations statistical databases. unstats.un.org/unsd/snaama

  33. Vermeij G (1995) Economics, volcanoes, and Phanerozoic revolutions. Paleobiology 21:125–152

    Google Scholar 

  34. Vermeij GJ (2004) Nature: an economic history. Princeton University Press, Princeton

    Google Scholar 

  35. Zemanksy MW, Dittman RH (1997) Heat and thermodynamics, 7th edn. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Garrett.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Garrett, T.J. Are there basic physical constraints on future anthropogenic emissions of carbon dioxide?. Climatic Change 104, 437–455 (2011). https://doi.org/10.1007/s10584-009-9717-9

Download citation

Keywords

  • Purchase Power Parity
  • Heat Engine
  • Primary Energy Consumption
  • Emission Growth
  • Market Exchange Rate