The early instrumental warm-bias: a solution for long central European temperature series 1760–2007


Instrumental temperature recording in the Greater Alpine Region (GAR) began in the year 1760. Prior to the 1850–1870 period, after which screens of different types protected the instruments, thermometers were insufficiently sheltered from direct sunlight so were normally placed on north-facing walls or windows. It is likely that temperatures recorded in the summer half of the year were biased warm and those in the winter half biased cold, with the summer effect dominating. Because the changeover to screens often occurred at similar times, often coincident with the formation of National Meteorological Services (NMSs) in the GAR, it has been difficult to determine the scale of the problem, as all neighbour sites were likely to be similarly affected. This paper uses simultaneous measurements taken for eight recent years at the old and modern site at Kremsmünster, Austria to assess the issue. The temperature differences between the two locations (screened and unscreened) have caused a change in the diurnal cycle, which depends on the time of year. Starting from this specific empirical evidence from the only still existing and active early instrumental measuring site in the region, we developed three correction models for orientations NW through N to NE. Using the orientation angle of the buildings derived from metadata in the station histories of the other early instrumental sites in the region (sites across the GAR in the range from NE to NW) different adjustments to the diurnal cycle are developed for each location. The effect on the 32 sites across the GAR varies due to different formulae being used by NMSs to calculate monthly means from the two or more observations made at each site each day. These formulae also vary with time, so considerable amounts of additional metadata have had to be collected to apply the adjustments across the whole network. Overall, the results indicate that summer (April to September) average temperatures are cooled by about 0.4°C before 1850, with winters (October to March) staying much the same. The effects on monthly temperature averages are largest in June (a cooling from 0.21° to 0.93°C, depending on location) to a slight warming (up to 0.3°C) at some sites in February. In addition to revising the temperature evolution during the past centuries, the results have important implications for the calibration of proxy climatic data in the region (such as tree ring indices and documentary data such as grape harvest dates). A difference series across the 32 sites in the GAR indicates that summers since 1760 have warmed by about 1°C less than winters.

This is a preview of subscription content, access via your institution.


  1. Aguilar E, Auer I, Brunet M, Peterson TC, Wieringa J (2003) Guidelines on climate metadata and homogenization. World Climate Programme Data and Monitoring WCDMP 53, WMO-TD 1186, WMO. Geneva

  2. Andrighetti M, Rampanelli G, Zardi D (2007) Ricostruzione ed analisi climatologica delle serie di temperatura e precipitazione di Verona (1741–2006). In: Proceedings of the convegno nazionale di fisica della terra fluida, 11–15 Giugno 2007, Ischia

  3. Annales de l’Institut de Physique du Globe (1890–1950) (before 1918: Elässische Jahrbücher)

  4. Auer I, Böhm R, Schöner W (2001a) Austrian long-term climate 1767–2000—Multiple instrumental climate time series from Central Europe. Österr Beitr zu Meteorologie und Geophysik, 25 147 pages plus Data- and Metadata-CD

  5. Auer I, Böhm R, Schöner W (2001b) Long climatic time series from Austria. In: Jones PD et al (eds) History and climate: memories of the future? Plenum, New York, pp 125–152

    Google Scholar 

  6. Auer I, Böhm R, Scheifinger H, Ungersböck M, Orlik A, Jurkovic A (2004) Metadata and their role in homogenizing. In: Proceedings of the fourth seminar for homogenization and quality control in climatological databases, Budapest, Hungary, 6–10 October 2003), WCDMP. 56, WMO-TD 1236: 17–23, WMO Geneva

  7. Auer I, Böhm R, Jurkovic A, Orlik A, Potzmann R, Schöner W, Ungersböck M, Brunetti M, Nanni T, Maugeri M, Briffa K, Jones P, Efthymiadis D, Mestre O, Moisselin JM, Begert M, Brazdil R, Bochnicek O, Cegnar T, Gajic-Capka M, Zaninovic K, Majstorovic Z, Szalai S, Szentimrey T (2005) A new instrumental precipitation dataset in the greater alpine region for the period 1800–2002. Int J Climatol 25:139–166

    Article  Google Scholar 

  8. Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa K, Jones PD, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin J-M, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) HISTALP—Historical instrumental climatological surface time series of the greater Alpine region 1760–2003. Int J Climatol 27:17–46

    Article  Google Scholar 

  9. Austaller H (1988) Die temperaturreihe von Kremsmünster. PhD thesis, University of Vienna, 223 pp

  10. Bergström H, Moberg A (2002) Daily air temperature and pressure series for Uppsala (1722–1998). Clim Change 53:213–252

    Article  Google Scholar 

  11. Bider M (1964) Meteorologische beobachtungen und arbeiten in Basel. In: Cent ans de météorologie en Suisse 1864–1963. SMA, Zurich, pp 83–87

    Google Scholar 

  12. Bohleber P (2008) Age distribution and δ 18O variability in a low accumulation Alpine ice core: perspective for paleoclimate studies. Diploma thesis, IUP, University of Heidelberg, 146 pp

  13. Böhm R, Auer I, Brunetti M, Maugeri M, Nanni T and Schöner W (2001) Regional temperature variability in the European Alps 1760–1998 from homogenized instrumental time series. Int J Climatol 21:1779–1801

    Article  Google Scholar 

  14. Brohan P, Jennedy J, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106. doi:10.1029/2005JD006548

    Article  Google Scholar 

  15. Brunet M, Saladié O, Jones P, Sigró J, Aguilar E, Moberg A, Lister D, Walther A, Lopez D, Almarza C (2006) The development of a new dataset of Spanish daily adjusted temperature series (SDATS) (1850–2003). Int J Climatol 26:1777–1802

    Article  Google Scholar 

  16. Brunetti M, Buffoni L, Lo Vecchio G, Maugeri M, Nanni T (2001) Tre secoli di meteorologia a Bologna. Edizioni CUSL, Bologna

    Google Scholar 

  17. Brunetti M, Maugeri M, Nanni T, Auer I, Böhm R, Schöner W (2006a) Precipitation variability and changes in the greater alpine region over the 1800–2003 period. J Geophys Res 111. doi: 10.1029/2005JD006674

  18. Brunetti M, Maugeri M, Monti F, Nanni T (2006b) Temperature and precipitation variability in Italy in the last two centuries from homogenized instrumental time series. Int J Climatol 26:345–381

    Article  Google Scholar 

  19. Buffoni L, Chlistovsky F, Maugeri M (1996) 1763–1996, 223 anni di rilevazioni termiche giornaliere a Milano-Brera. Edizioni CUSL, Milano

  20. Büntgen U, Frank DC, Nievergelt D, Esper J (2006) Summer temperature variations in the European Alps: AD 755–2004. J Climate 19:5606–5623

    Article  Google Scholar 

  21. Camuffo D (2002) History of the long series of daily air temperature in Padova (1725–1998). Clim Change 53:7–75

    Article  Google Scholar 

  22. Camuffo D, Jones PD (eds) (2002) Improved understanding of past climatic variability from early daily European instrumental records. Clim Change 53 (special edition)

  23. Carlini (1833) Sulla distribuzione e sull’uso delle osservazioni meteorologiche di Milano. Effemeridi astronomiche di Milano 1833

  24. Chlistovsky V, Buffoni L, Maugeri M (1997) La temperature a Milano-Brera. Edizioni CUSL–Collata Scientifica, Milano, 192 pp

  25. Della-Marta P, Wanner H (2006) A method of homogenizing the extremes and mean of daily temperature measurements. J Climate 19:4179–4197

    Article  Google Scholar 

  26. Di Napoli G (1996) Tre secoli di clima a Torino: stato dei lavori. Nimbus 13–14:30–31

    Google Scholar 

  27. Di Napoli G, Mercalli L (2008) Il clima di Torino. 900 pp

  28. Efthymiadis D, Jones PD, Briffa K, Böhm R, Maugeri M (2007) Influence of large-scale atmospheric circulation on climate variability in the Greater Alpine Region of Europe. J Geophys Res 112:D12104. doi:10.1029/2006JD008021

    Article  Google Scholar 

  29. Frank D, Büntgen U, Böhm R, Maugeri M, Esper J (2007) Warmer early instrumental measurements versus colder reconstructed temperatures: shooting at a moving target. Quat Sci Rev 26:3298–3310

    Article  Google Scholar 

  30. Geiger R, Aron RH, Todhunter P (1995) The climate near the ground. Vieweg, Braunschweig, 528 pp

  31. Häfner R (1994) 175 Jahre Sternwarte Bogenhausen.

  32. Herrenschneider JLA (1815) Résumé des observations météorologiques faites a Strasbourg depuis le commencement de l’an 1801 jusqu’à la fin de 1810. Mémoires de la Société des Sciences de Strasbourg 1

  33. Herrenschneider JLA (1825) Résumé des observations météorologiques faites a Strasbourg depuis le commencement de l’an 1811 jusqu’à la fin de 1820. Mémoires de la Société des Sciences de Strasbourg 2 46 pages plus 10 tables

  34. Hiebl J (2006) The early instrumental climate period (1760–1860) in Europe. Evidence from the Alpine region and Southern Scandinavia. Diploma thesis, Geogr Inst, University of Vienna, 103 pp

  35. Hormes A, Müller BU, Schlüchter C (2001) The Alps with little ice: evidence for eight Holocene phases of reduced glacier extent in the Central Swiss Alps. The Holocene 11:255–265

    Article  Google Scholar 

  36. Jones PD (2001) Early European instrumental records. In: Jones PD et al (eds) History and climate: memories of the future? Plenum, New York, pp 55–77

    Google Scholar 

  37. Jones PD, Lister DH (2002) The daily temperature record for St. Petersburg, 1743 1996. Clim Change 53:253–258

    Article  Google Scholar 

  38. Jones PD, Moberg A (2003) Hemispheric and large-scale surface air temperature variations: an extensive revision and an update to 2001. J Climate 16:206–223

    Article  Google Scholar 

  39. Jones PD, New M, Parker DE, Martin S, Rigor IG (1999) Surface air temperature and its variations over the last 150 years. Rev Geophys 37:173–199

    Article  Google Scholar 

  40. Jones PD, Briffa KR, Osborn TJ (2003) Changes in the Northern hemisphere annual cycle: implications for paleoclimatology? J Geophys Res 108(D18):4588. doi:10.10.1029/2003JD003695

    Article  Google Scholar 

  41. Klemun M (1994) Aufbau und Organisation des meteorologischen Meßnetzes in Kärnten (19. Jh.). Carinthia II 184/104:97–114

    Google Scholar 

  42. Koinig KA, Kamenik C, Schmidt R, Agusti-Panareda A, Appleby PG, Lami A, Prazakova M, Rose N, Schnell OA, Tessadri R, Thompson R, Psenner R (2002) Environmental changes in an alpine lake (Gossenkollesee, Austria) over the last two centuries—the influence of air temperature on biological parameters. J Paleolimnol 28:147–160

    Article  Google Scholar 

  43. Lang C (1882) Erläuterungen zu 67-jährigen Beobachtungen in München. Bavarian Meteorological Yearbooks 4:29–70

    Google Scholar 

  44. Lauscher F, Roller M, Wacha G, Weiss E, Frenzel J (1959) Witterung und Klima von Linz. ÖGM, 235 pp

  45. Mangini A, Spötl C, Verdes P (2005) Reconstruction of temperature in the Central Alps during the past 2000 years from a δ 18O stalagmite record. Earth Planet Sci Lett 235:741–751

    Article  Google Scholar 

  46. Manley G (1974) Central England temperatures: monthly means 1659 to 1973. Q J Royal Meteorol Soc 100:389–405

    Article  Google Scholar 

  47. Maugeri M, Buffoni L, Chlistovsky F (2002) Daily Milan temperature and pressure series (1763–1998): history of the observations and data and metadata recovery. Clim Change 53:101–149

    Article  Google Scholar 

  48. Maurer J, Billwiller Jr, Heß C (1909) Das Klima der Schweiz 1864–1900, vols. 1 and 2, 302, 217 pp

  49. Meier N, Rutishauser T, Pfister C, Wanner H, Luterbacher J (2007) Grape harvest dates as a proxy for Swiss April to August temperature reconstructions back to AD 1480. Geophys Res Lett 34:L20705. doi:10.1029/2007GL031381

    Article  Google Scholar 

  50. Mercalli L, Cat Berro D, Montuschi S, Castellano C, Ratti M, Di Napoli G, Mortara G, Guindani N (2003) Atlante climatico della Valle d’Aosta. Soc Met Subalpina, Torino, 405 pp

  51. Moberg A, Alexandersson H (1997) Homogenization of Swedish temperature data. Part II: homogenized gridded air temperature compared with a subset of global air temperature since 1861. Int J Climatol 17:35–54

    Article  Google Scholar 

  52. Moberg A, Bergström H (1997) Homogenization of Swedish temperature data. Part III: the long temperature records from Stockholm and Uppsala. Int J Climatol 17:667–699

    Article  Google Scholar 

  53. Moberg A, Bergström H, Ruiz Krigsman J, Svanered O (2002) Daily air temperature and pressure series for Stockholm (1756–1998). Clim Change 53:171–212

    Article  Google Scholar 

  54. Moberg A, Alexandersson H, Bergström H, Jones PD (2003) Were southern Swedish temperatures before 1860 as warm as measured? Int J Climatol 23:1495–1521

    Article  Google Scholar 

  55. Moberg A, Tuomenvirta H, Nordli PØ (2005) Recent climatic trends. In: Seppälä H (ed) The physical geography of Fennoscandia. Oxford University Press, Oxford

    Google Scholar 

  56. Müller-Westermeier (1992) Untersuchungen langer deutscher Temperaturreihen. Meteorologische Zeitschrift NF 1:155–171

    Google Scholar 

  57. Nordli PØ (2001) Spring and summer temperatures in south eastern Norway (1749–2000). DNMI reports 01/01 Klima. Norwegian Meteorological Institute, Oslo

  58. Parker DE (1994) Effects of changing exposure of thermometers at land stations. Int J Climatol 14:1–31

    Article  Google Scholar 

  59. Parker DE, Legg TP, Folland CK (1992) A new daily Central England temperature series, 1772–1991. Int J Climatol 12:317–342

    Article  Google Scholar 

  60. Peppler A (1922) Die badische Landeswetterwarte Karlsruhe. Braun’sche Hofbuchdruckerei

  61. Peterson TC, Easterling DR, Karl TR, Groisman P, Auer I, Böhm R, Plummer N, Nicholis N, Torok S, Vincent L, Tuomenvirta H, Salinger J, Förland EJ, Hanssen-Bauer I, Alexandersson H, Jones PD, Parker D (1998) Homogeneity adjustments of in situ climate data: a review. Int J Climatol 18:1493–1517

    Article  Google Scholar 

  62. Pfister C (1975) Agrarkonjunktur und Witterungsverlauf im Westlichen Schweizer Mittelland 1755–1797. Geographica Bernensia G2. Bern

  63. Plantamour E (1863) Du climat de Genève. Henri Georg, Éditeur, Genève

  64. Plantamour E (1876) Nouveles études sur le climat de Genève. Henri Georg, Éditeur, Genève

  65. Polli S (1950) Valori medi ed estremi del clima di Trieste. Istituto Talassografico Pubbl., N. 257, 15 pp

  66. Prettner J (1865) Klima und Witterung von Klagenfurt. Jb d Museums VII

  67. Riggenbach A (1892) Geschichte der meteorologischen Beobachtungen in Basel

  68. Stravisi F (2006) La meteorologia a Trieste. In: La variabilità del clima locale relazionata ai fenomeni di camobiamento climatico globale. Studi regionali a monografici 37:245–288

  69. Trenberth KE, Jones PD (coord. lead authors) (2007) Observations: surface and atmospheric climate change. In: Climate change 2007: the physical science basis. Contribution of WG 1 to the 4th assessment report of the IPCC. Cambridge Univ. Press, Cambridge, UK and New York

  70. Trepinska J (ed) (1997) Wahania klimatu w Krakowie 1792–1995 (Fluctuations of climate in Cracow 1792–1992). Institute of Geograophy of Jagellonian University, Cracow, 198 pp

  71. van Engelen AFV, Nellestijn JW (1995) Monthly, seasonal and annual means of the air temperature in tenths of centigrades in De Bilt, Netherlands, 1706–1995. KNMI (Dutch Met. Service) Report, Climatological Services Division

  72. Venerio G (1851) Osservazioni meteorologiche fatte in Udine nel Friuli pel quarantennio 1803–1842

  73. Vincent C, Le Meur E, Six D, Funk M (2005) Solving the paradox of the end of the Little Ice Age in the Alps. Geophys Res Lett 32:L09706. doi:10.1029/2005GL022552

    Article  Google Scholar 

  74. Vinther BM, Andersen KK, Jones PD, Briffa KR, Cappelen J (2006) Extending Greenland temperature records into the late 18th century. J Geophys Res 111:D11105. doi:10.1029/2005JD006810

    Article  Google Scholar 

  75. von Rudloff H (1967) Die Schwankungen und Pendelungen des Klimas in Europa seit dem Beginn der regelmäßigen Instrumenten-Beobachtungen (1670). Vieweg, Braunschweig, 370 pp

  76. von Schmöger (1835) Resultate der meteorologischen Beobachtungen zu Regensburg von 1774–1834

  77. von Schoder (1882) Fünfzigjährige Ergebnisse der meteorologischen Beobachtungen in Stuttgart. Württembergisches Meteorologisches Jahrbuch 1878–1879

  78. von Gunten L, Heiri O, Bigler C, van Leeuwen J, Casty C, Lotter F, Sturm M (2007) Seasonal temperatures for the past ∼400 years reconstructed from diatom and chironomid assemblages in a high-altitude lake (Lej da la Tscheppa, Switzerland). J Paleolimnol 39:283–299. doi:10.1007/s10933-007-9103-4

    Article  Google Scholar 

  79. Vose RS, Schmoyer RL, Steurer PM, Peterson TC, Heim R, Karl TR, Eischeid J (1992) The global historical climatology network: long-term monthly temperature, precipitation, sea level pressure, and station pressure data. ORNL/CDIAC-53, NDP-041. Carbon Dioxide Information Analysis Center. Oak Ridge National Laboratory, Oak Ridge

  80. Wild (1879) Aufstellung der Thermometer zur Bestimmung der wahren Lufttemperatur. In: Repetitorium für meteorologie, T. VI, No. 9, St. Petersburg

  81. Winkler P (2006) Hohenpeißenberg 1781–2006—das älteste Bergobservatorium der Welt. Deutscher Wetterdienst, Offenbach am Main, 174 pp

  82. Zallinger F (1833) Innsbrucker meteorologische Beobachtungen von 50 Jahren. Ferdinandeum, Wagnersche Schriften, 107 pp

  83. Zemp M (2006) Glaciers and climate change. Spatio-temporal analysis of glacier fluctuations in the European Alps after 1850. Schriftenreihe Physische Geographie, Glaziologie und Geomorphodynamik 49. PhD theses series, University of Zurich

Download references

Author information



Corresponding author

Correspondence to Reinhard Böhm.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Böhm, R., Jones, P.D., Hiebl, J. et al. The early instrumental warm-bias: a solution for long central European temperature series 1760–2007. Climatic Change 101, 41–67 (2010).

Download citation


  • Temperature Series
  • Climate Network
  • Central England Temperature
  • National Meteorological Service
  • Great Alpine Region