Climatic Change

, Volume 101, Issue 1–2, pp 41–67 | Cite as

The early instrumental warm-bias: a solution for long central European temperature series 1760–2007

  • Reinhard Böhm
  • Philip D. Jones
  • Johann Hiebl
  • David Frank
  • Michele Brunetti
  • Maurizio Maugeri
Article

Abstract

Instrumental temperature recording in the Greater Alpine Region (GAR) began in the year 1760. Prior to the 1850–1870 period, after which screens of different types protected the instruments, thermometers were insufficiently sheltered from direct sunlight so were normally placed on north-facing walls or windows. It is likely that temperatures recorded in the summer half of the year were biased warm and those in the winter half biased cold, with the summer effect dominating. Because the changeover to screens often occurred at similar times, often coincident with the formation of National Meteorological Services (NMSs) in the GAR, it has been difficult to determine the scale of the problem, as all neighbour sites were likely to be similarly affected. This paper uses simultaneous measurements taken for eight recent years at the old and modern site at Kremsmünster, Austria to assess the issue. The temperature differences between the two locations (screened and unscreened) have caused a change in the diurnal cycle, which depends on the time of year. Starting from this specific empirical evidence from the only still existing and active early instrumental measuring site in the region, we developed three correction models for orientations NW through N to NE. Using the orientation angle of the buildings derived from metadata in the station histories of the other early instrumental sites in the region (sites across the GAR in the range from NE to NW) different adjustments to the diurnal cycle are developed for each location. The effect on the 32 sites across the GAR varies due to different formulae being used by NMSs to calculate monthly means from the two or more observations made at each site each day. These formulae also vary with time, so considerable amounts of additional metadata have had to be collected to apply the adjustments across the whole network. Overall, the results indicate that summer (April to September) average temperatures are cooled by about 0.4°C before 1850, with winters (October to March) staying much the same. The effects on monthly temperature averages are largest in June (a cooling from 0.21° to 0.93°C, depending on location) to a slight warming (up to 0.3°C) at some sites in February. In addition to revising the temperature evolution during the past centuries, the results have important implications for the calibration of proxy climatic data in the region (such as tree ring indices and documentary data such as grape harvest dates). A difference series across the 32 sites in the GAR indicates that summers since 1760 have warmed by about 1°C less than winters.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilar E, Auer I, Brunet M, Peterson TC, Wieringa J (2003) Guidelines on climate metadata and homogenization. World Climate Programme Data and Monitoring WCDMP 53, WMO-TD 1186, WMO. GenevaGoogle Scholar
  2. Andrighetti M, Rampanelli G, Zardi D (2007) Ricostruzione ed analisi climatologica delle serie di temperatura e precipitazione di Verona (1741–2006). In: Proceedings of the convegno nazionale di fisica della terra fluida, 11–15 Giugno 2007, IschiaGoogle Scholar
  3. Annales de l’Institut de Physique du Globe (1890–1950) (before 1918: Elässische Jahrbücher)Google Scholar
  4. Auer I, Böhm R, Schöner W (2001a) Austrian long-term climate 1767–2000—Multiple instrumental climate time series from Central Europe. Österr Beitr zu Meteorologie und Geophysik, 25 147 pages plus Data- and Metadata-CDGoogle Scholar
  5. Auer I, Böhm R, Schöner W (2001b) Long climatic time series from Austria. In: Jones PD et al (eds) History and climate: memories of the future? Plenum, New York, pp 125–152Google Scholar
  6. Auer I, Böhm R, Scheifinger H, Ungersböck M, Orlik A, Jurkovic A (2004) Metadata and their role in homogenizing. In: Proceedings of the fourth seminar for homogenization and quality control in climatological databases, Budapest, Hungary, 6–10 October 2003), WCDMP. 56, WMO-TD 1236: 17–23, WMO GenevaGoogle Scholar
  7. Auer I, Böhm R, Jurkovic A, Orlik A, Potzmann R, Schöner W, Ungersböck M, Brunetti M, Nanni T, Maugeri M, Briffa K, Jones P, Efthymiadis D, Mestre O, Moisselin JM, Begert M, Brazdil R, Bochnicek O, Cegnar T, Gajic-Capka M, Zaninovic K, Majstorovic Z, Szalai S, Szentimrey T (2005) A new instrumental precipitation dataset in the greater alpine region for the period 1800–2002. Int J Climatol 25:139–166CrossRefGoogle Scholar
  8. Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa K, Jones PD, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin J-M, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) HISTALP—Historical instrumental climatological surface time series of the greater Alpine region 1760–2003. Int J Climatol 27:17–46CrossRefGoogle Scholar
  9. Austaller H (1988) Die temperaturreihe von Kremsmünster. PhD thesis, University of Vienna, 223 ppGoogle Scholar
  10. Bergström H, Moberg A (2002) Daily air temperature and pressure series for Uppsala (1722–1998). Clim Change 53:213–252CrossRefGoogle Scholar
  11. Bider M (1964) Meteorologische beobachtungen und arbeiten in Basel. In: Cent ans de météorologie en Suisse 1864–1963. SMA, Zurich, pp 83–87Google Scholar
  12. Bohleber P (2008) Age distribution and δ 18O variability in a low accumulation Alpine ice core: perspective for paleoclimate studies. Diploma thesis, IUP, University of Heidelberg, 146 ppGoogle Scholar
  13. Böhm R, Auer I, Brunetti M, Maugeri M, Nanni T and Schöner W (2001) Regional temperature variability in the European Alps 1760–1998 from homogenized instrumental time series. Int J Climatol 21:1779–1801CrossRefGoogle Scholar
  14. Brohan P, Jennedy J, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106. doi:10.1029/2005JD006548 CrossRefGoogle Scholar
  15. Brunet M, Saladié O, Jones P, Sigró J, Aguilar E, Moberg A, Lister D, Walther A, Lopez D, Almarza C (2006) The development of a new dataset of Spanish daily adjusted temperature series (SDATS) (1850–2003). Int J Climatol 26:1777–1802CrossRefGoogle Scholar
  16. Brunetti M, Buffoni L, Lo Vecchio G, Maugeri M, Nanni T (2001) Tre secoli di meteorologia a Bologna. Edizioni CUSL, BolognaGoogle Scholar
  17. Brunetti M, Maugeri M, Nanni T, Auer I, Böhm R, Schöner W (2006a) Precipitation variability and changes in the greater alpine region over the 1800–2003 period. J Geophys Res 111. doi: 10.1029/2005JD006674
  18. Brunetti M, Maugeri M, Monti F, Nanni T (2006b) Temperature and precipitation variability in Italy in the last two centuries from homogenized instrumental time series. Int J Climatol 26:345–381CrossRefGoogle Scholar
  19. Buffoni L, Chlistovsky F, Maugeri M (1996) 1763–1996, 223 anni di rilevazioni termiche giornaliere a Milano-Brera. Edizioni CUSL, MilanoGoogle Scholar
  20. Büntgen U, Frank DC, Nievergelt D, Esper J (2006) Summer temperature variations in the European Alps: AD 755–2004. J Climate 19:5606–5623CrossRefGoogle Scholar
  21. Camuffo D (2002) History of the long series of daily air temperature in Padova (1725–1998). Clim Change 53:7–75CrossRefGoogle Scholar
  22. Camuffo D, Jones PD (eds) (2002) Improved understanding of past climatic variability from early daily European instrumental records. Clim Change 53 (special edition)Google Scholar
  23. Carlini (1833) Sulla distribuzione e sull’uso delle osservazioni meteorologiche di Milano. Effemeridi astronomiche di Milano 1833Google Scholar
  24. Chlistovsky V, Buffoni L, Maugeri M (1997) La temperature a Milano-Brera. Edizioni CUSL–Collata Scientifica, Milano, 192 ppGoogle Scholar
  25. Della-Marta P, Wanner H (2006) A method of homogenizing the extremes and mean of daily temperature measurements. J Climate 19:4179–4197CrossRefGoogle Scholar
  26. Di Napoli G (1996) Tre secoli di clima a Torino: stato dei lavori. Nimbus 13–14:30–31Google Scholar
  27. Di Napoli G, Mercalli L (2008) Il clima di Torino. 900 ppGoogle Scholar
  28. Efthymiadis D, Jones PD, Briffa K, Böhm R, Maugeri M (2007) Influence of large-scale atmospheric circulation on climate variability in the Greater Alpine Region of Europe. J Geophys Res 112:D12104. doi:10.1029/2006JD008021 CrossRefGoogle Scholar
  29. Frank D, Büntgen U, Böhm R, Maugeri M, Esper J (2007) Warmer early instrumental measurements versus colder reconstructed temperatures: shooting at a moving target. Quat Sci Rev 26:3298–3310CrossRefGoogle Scholar
  30. Geiger R, Aron RH, Todhunter P (1995) The climate near the ground. Vieweg, Braunschweig, 528 ppGoogle Scholar
  31. Häfner R (1994) 175 Jahre Sternwarte Bogenhausen. http://www.usm.uni-muenchen.de/hist.html
  32. Herrenschneider JLA (1815) Résumé des observations météorologiques faites a Strasbourg depuis le commencement de l’an 1801 jusqu’à la fin de 1810. Mémoires de la Société des Sciences de Strasbourg 1Google Scholar
  33. Herrenschneider JLA (1825) Résumé des observations météorologiques faites a Strasbourg depuis le commencement de l’an 1811 jusqu’à la fin de 1820. Mémoires de la Société des Sciences de Strasbourg 2 46 pages plus 10 tablesGoogle Scholar
  34. Hiebl J (2006) The early instrumental climate period (1760–1860) in Europe. Evidence from the Alpine region and Southern Scandinavia. Diploma thesis, Geogr Inst, University of Vienna, 103 ppGoogle Scholar
  35. Hormes A, Müller BU, Schlüchter C (2001) The Alps with little ice: evidence for eight Holocene phases of reduced glacier extent in the Central Swiss Alps. The Holocene 11:255–265CrossRefGoogle Scholar
  36. Jones PD (2001) Early European instrumental records. In: Jones PD et al (eds) History and climate: memories of the future? Plenum, New York, pp 55–77Google Scholar
  37. Jones PD, Lister DH (2002) The daily temperature record for St. Petersburg, 1743 1996. Clim Change 53:253–258CrossRefGoogle Scholar
  38. Jones PD, Moberg A (2003) Hemispheric and large-scale surface air temperature variations: an extensive revision and an update to 2001. J Climate 16:206–223CrossRefGoogle Scholar
  39. Jones PD, New M, Parker DE, Martin S, Rigor IG (1999) Surface air temperature and its variations over the last 150 years. Rev Geophys 37:173–199CrossRefGoogle Scholar
  40. Jones PD, Briffa KR, Osborn TJ (2003) Changes in the Northern hemisphere annual cycle: implications for paleoclimatology? J Geophys Res 108(D18):4588. doi:10.10.1029/2003JD003695 CrossRefGoogle Scholar
  41. Klemun M (1994) Aufbau und Organisation des meteorologischen Meßnetzes in Kärnten (19. Jh.). Carinthia II 184/104:97–114Google Scholar
  42. Koinig KA, Kamenik C, Schmidt R, Agusti-Panareda A, Appleby PG, Lami A, Prazakova M, Rose N, Schnell OA, Tessadri R, Thompson R, Psenner R (2002) Environmental changes in an alpine lake (Gossenkollesee, Austria) over the last two centuries—the influence of air temperature on biological parameters. J Paleolimnol 28:147–160CrossRefGoogle Scholar
  43. Lang C (1882) Erläuterungen zu 67-jährigen Beobachtungen in München. Bavarian Meteorological Yearbooks 4:29–70Google Scholar
  44. Lauscher F, Roller M, Wacha G, Weiss E, Frenzel J (1959) Witterung und Klima von Linz. ÖGM, 235 ppGoogle Scholar
  45. Mangini A, Spötl C, Verdes P (2005) Reconstruction of temperature in the Central Alps during the past 2000 years from a δ 18O stalagmite record. Earth Planet Sci Lett 235:741–751CrossRefGoogle Scholar
  46. Manley G (1974) Central England temperatures: monthly means 1659 to 1973. Q J Royal Meteorol Soc 100:389–405CrossRefGoogle Scholar
  47. Maugeri M, Buffoni L, Chlistovsky F (2002) Daily Milan temperature and pressure series (1763–1998): history of the observations and data and metadata recovery. Clim Change 53:101–149CrossRefGoogle Scholar
  48. Maurer J, Billwiller Jr, Heß C (1909) Das Klima der Schweiz 1864–1900, vols. 1 and 2, 302, 217 ppGoogle Scholar
  49. Meier N, Rutishauser T, Pfister C, Wanner H, Luterbacher J (2007) Grape harvest dates as a proxy for Swiss April to August temperature reconstructions back to AD 1480. Geophys Res Lett 34:L20705. doi:10.1029/2007GL031381 CrossRefGoogle Scholar
  50. Mercalli L, Cat Berro D, Montuschi S, Castellano C, Ratti M, Di Napoli G, Mortara G, Guindani N (2003) Atlante climatico della Valle d’Aosta. Soc Met Subalpina, Torino, 405 ppGoogle Scholar
  51. Moberg A, Alexandersson H (1997) Homogenization of Swedish temperature data. Part II: homogenized gridded air temperature compared with a subset of global air temperature since 1861. Int J Climatol 17:35–54CrossRefGoogle Scholar
  52. Moberg A, Bergström H (1997) Homogenization of Swedish temperature data. Part III: the long temperature records from Stockholm and Uppsala. Int J Climatol 17:667–699CrossRefGoogle Scholar
  53. Moberg A, Bergström H, Ruiz Krigsman J, Svanered O (2002) Daily air temperature and pressure series for Stockholm (1756–1998). Clim Change 53:171–212CrossRefGoogle Scholar
  54. Moberg A, Alexandersson H, Bergström H, Jones PD (2003) Were southern Swedish temperatures before 1860 as warm as measured? Int J Climatol 23:1495–1521CrossRefGoogle Scholar
  55. Moberg A, Tuomenvirta H, Nordli PØ (2005) Recent climatic trends. In: Seppälä H (ed) The physical geography of Fennoscandia. Oxford University Press, OxfordGoogle Scholar
  56. Müller-Westermeier (1992) Untersuchungen langer deutscher Temperaturreihen. Meteorologische Zeitschrift NF 1:155–171Google Scholar
  57. Nordli PØ (2001) Spring and summer temperatures in south eastern Norway (1749–2000). DNMI reports 01/01 Klima. Norwegian Meteorological Institute, OsloGoogle Scholar
  58. Parker DE (1994) Effects of changing exposure of thermometers at land stations. Int J Climatol 14:1–31CrossRefGoogle Scholar
  59. Parker DE, Legg TP, Folland CK (1992) A new daily Central England temperature series, 1772–1991. Int J Climatol 12:317–342CrossRefGoogle Scholar
  60. Peppler A (1922) Die badische Landeswetterwarte Karlsruhe. Braun’sche HofbuchdruckereiGoogle Scholar
  61. Peterson TC, Easterling DR, Karl TR, Groisman P, Auer I, Böhm R, Plummer N, Nicholis N, Torok S, Vincent L, Tuomenvirta H, Salinger J, Förland EJ, Hanssen-Bauer I, Alexandersson H, Jones PD, Parker D (1998) Homogeneity adjustments of in situ climate data: a review. Int J Climatol 18:1493–1517CrossRefGoogle Scholar
  62. Pfister C (1975) Agrarkonjunktur und Witterungsverlauf im Westlichen Schweizer Mittelland 1755–1797. Geographica Bernensia G2. BernGoogle Scholar
  63. Plantamour E (1863) Du climat de Genève. Henri Georg, Éditeur, GenèveGoogle Scholar
  64. Plantamour E (1876) Nouveles études sur le climat de Genève. Henri Georg, Éditeur, GenèveGoogle Scholar
  65. Polli S (1950) Valori medi ed estremi del clima di Trieste. Istituto Talassografico Pubbl., N. 257, 15 ppGoogle Scholar
  66. Prettner J (1865) Klima und Witterung von Klagenfurt. Jb d Museums VIIGoogle Scholar
  67. Riggenbach A (1892) Geschichte der meteorologischen Beobachtungen in BaselGoogle Scholar
  68. Stravisi F (2006) La meteorologia a Trieste. In: La variabilità del clima locale relazionata ai fenomeni di camobiamento climatico globale. Studi regionali a monografici 37:245–288Google Scholar
  69. Trenberth KE, Jones PD (coord. lead authors) (2007) Observations: surface and atmospheric climate change. In: Climate change 2007: the physical science basis. Contribution of WG 1 to the 4th assessment report of the IPCC. Cambridge Univ. Press, Cambridge, UK and New YorkGoogle Scholar
  70. Trepinska J (ed) (1997) Wahania klimatu w Krakowie 1792–1995 (Fluctuations of climate in Cracow 1792–1992). Institute of Geograophy of Jagellonian University, Cracow, 198 ppGoogle Scholar
  71. van Engelen AFV, Nellestijn JW (1995) Monthly, seasonal and annual means of the air temperature in tenths of centigrades in De Bilt, Netherlands, 1706–1995. KNMI (Dutch Met. Service) Report, Climatological Services DivisionGoogle Scholar
  72. Venerio G (1851) Osservazioni meteorologiche fatte in Udine nel Friuli pel quarantennio 1803–1842Google Scholar
  73. Vincent C, Le Meur E, Six D, Funk M (2005) Solving the paradox of the end of the Little Ice Age in the Alps. Geophys Res Lett 32:L09706. doi:10.1029/2005GL022552 CrossRefGoogle Scholar
  74. Vinther BM, Andersen KK, Jones PD, Briffa KR, Cappelen J (2006) Extending Greenland temperature records into the late 18th century. J Geophys Res 111:D11105. doi:10.1029/2005JD006810 CrossRefGoogle Scholar
  75. von Rudloff H (1967) Die Schwankungen und Pendelungen des Klimas in Europa seit dem Beginn der regelmäßigen Instrumenten-Beobachtungen (1670). Vieweg, Braunschweig, 370 ppGoogle Scholar
  76. von Schmöger (1835) Resultate der meteorologischen Beobachtungen zu Regensburg von 1774–1834Google Scholar
  77. von Schoder (1882) Fünfzigjährige Ergebnisse der meteorologischen Beobachtungen in Stuttgart. Württembergisches Meteorologisches Jahrbuch 1878–1879Google Scholar
  78. von Gunten L, Heiri O, Bigler C, van Leeuwen J, Casty C, Lotter F, Sturm M (2007) Seasonal temperatures for the past ∼400 years reconstructed from diatom and chironomid assemblages in a high-altitude lake (Lej da la Tscheppa, Switzerland). J Paleolimnol 39:283–299. doi:10.1007/s10933-007-9103-4 CrossRefGoogle Scholar
  79. Vose RS, Schmoyer RL, Steurer PM, Peterson TC, Heim R, Karl TR, Eischeid J (1992) The global historical climatology network: long-term monthly temperature, precipitation, sea level pressure, and station pressure data. ORNL/CDIAC-53, NDP-041. Carbon Dioxide Information Analysis Center. Oak Ridge National Laboratory, Oak RidgeGoogle Scholar
  80. Wild (1879) Aufstellung der Thermometer zur Bestimmung der wahren Lufttemperatur. In: Repetitorium für meteorologie, T. VI, No. 9, St. PetersburgGoogle Scholar
  81. Winkler P (2006) Hohenpeißenberg 1781–2006—das älteste Bergobservatorium der Welt. Deutscher Wetterdienst, Offenbach am Main, 174 ppGoogle Scholar
  82. Zallinger F (1833) Innsbrucker meteorologische Beobachtungen von 50 Jahren. Ferdinandeum, Wagnersche Schriften, 107 ppGoogle Scholar
  83. Zemp M (2006) Glaciers and climate change. Spatio-temporal analysis of glacier fluctuations in the European Alps after 1850. Schriftenreihe Physische Geographie, Glaziologie und Geomorphodynamik 49. PhD theses series, University of ZurichGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Reinhard Böhm
    • 1
  • Philip D. Jones
    • 2
  • Johann Hiebl
    • 1
  • David Frank
    • 3
  • Michele Brunetti
    • 4
  • Maurizio Maugeri
    • 5
  1. 1.Central Institute for Meteorology and Geodynamics (ZAMG)ViennaAustria
  2. 2.Climatic Research Unit (CRU), School of Environmental SciencesUniversity of East AngliaNorwichUK
  3. 3.Swiss Federal Research Institute WSLBirmensdorfSwitzerland
  4. 4.Istituto di Scienze dell’Atmosfera e del Clima (ISAC)–CNRBolognaItaly
  5. 5.Dipartimento di FisicaUniversità degli StudiMilanItaly

Personalised recommendations