Climatic Change

, 98:113 | Cite as

Use of the Köppen–Trewartha climate classification to evaluate climatic refugia in statistically derived ecoregions for the People’s Republic of China

  • Barry Baker
  • Henry Diaz
  • William Hargrove
  • Forrest Hoffman
Article

Abstract

Changes in climate as projected by state-of-the-art climate models are likely to result in novel combinations of climate and topo-edaphic factors that will have substantial impacts on the distribution and persistence of natural vegetation and animal species. We have used multivariate techniques to quantify some of these changes; the method employed was the Multivariate Spatio-Temporal Clustering (MSTC) algorithm. We used the MSTC to quantitatively define ecoregions for the People’s Republic of China for historical and projected future climates. Using the Köppen–Trewartha classification system we were able to quantify some of the temperature and precipitation relationships of the ecoregions. We then tested the hypothesis that impacts to environments will be lower for ecoregions that retain their approximate geographic locations. Our results showed that climate in 2050, as projected from anthropogenic forcings using the Hadley Centre HadCM3 general circulation model, were sufficient to create novel environmental conditions even where ecoregions remained spatially stable; cluster number was found to be of paramount importance in detecting novelty. Continental-scale analyses are generally able to locate potentially static ecoregions but they may be insufficient to define the position of those reserves at a grid cell-by-grid cell basis.

References

  1. Bailey RG (1996) Ecosystem geography. Springer, New YorkGoogle Scholar
  2. Baker BB, Moseley RK (2007) Advancing treeline and retreating glaciers: implications for conservation in Yunnan, P.R. China. Arct Antarct Alp Res 39:200–209CrossRefGoogle Scholar
  3. Box EO (1981) Macroclimate and plant forms: an introduction to predictive modeling in phytogeography. Dr. W. Junk Publishers, The HagueGoogle Scholar
  4. Chang DHS (1981) The vegetation zonation of the Tibetan Plateau. Mt Res Dev 1:29–48CrossRefGoogle Scholar
  5. Chang DHS (1983) The Tibetan Plateau in relation to the vegetation of China. Ann Mo Bot Gard 70:564–570CrossRefGoogle Scholar
  6. Chen X, Zhang X-S, Li B-L (2003) The possible response of life zones in China under global climate change. Glob Planet Change 38:327–337CrossRefGoogle Scholar
  7. Coulston JW, Riitters KH (2005) Preserving biodiversity under current and future climates: a case study. Glob Ecol Biogeogr 14:31–38CrossRefGoogle Scholar
  8. Cubash U, Meehl GA, Boer GJ, Stouffer RJ, Dix M, Noda CA, Senior CA, Raper S, Yap KS (2001) Projections of future change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate Change 2001: the scientific basis. Contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, CambridgeGoogle Scholar
  9. Daly C, Neilson RP, Phillips DL (1994) A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J Appl Meteorol 33:140–158CrossRefGoogle Scholar
  10. Daly C, Gibson WP, Taylor GH, Johnson GL, Pasteris P (2002) A knowledge-based approach to the statistical mapping of climate. Clim Res 22:99–113CrossRefGoogle Scholar
  11. Diaz HF, Eischeid JK (2007) Disappearing “alpine tundra” Köppen climatic type in the western United States. Geophys Res Lett 34:L18707. doi:10.1029/2007GL031253 CrossRefGoogle Scholar
  12. Diaz HF, Eischeid JK, Duncan C, Bradley RS (2003) Variability of freezing levels, melting season indicators, and snow cover for selected high-evelation and continental regions in the last 50 years. Clim Change 59:33–52CrossRefGoogle Scholar
  13. Estivill-Castro V, Yang J (2004) Fast and robust general purpose clustering algorithms. Data Min Knowl Disc 8:127–150CrossRefGoogle Scholar
  14. Fang J-Y, Yoda K (1989) Climate and vegetation in China II. Distribution of main vegetation types and thermal climate. Ecol Res V4:71–83CrossRefGoogle Scholar
  15. Fraedrich K, Gerstengarbe FW, Werner PC (2001) Climate shifts during the last century. Clim Change 50:405–417CrossRefGoogle Scholar
  16. Gnanadesikan A, Stouffer RJ (2006) Diagnosing atmosphere–ocean general circulation model errors relevant to the terrestrial biosphere using the Köppen climate classification. Geophys Res Lett 33:L22701. doi:10.1029/2006GL028098 CrossRefGoogle Scholar
  17. Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168CrossRefGoogle Scholar
  18. Gou X, Chen F, Jacoby G, Cook E, Yang M, Peng J, Zhang Y (2007) Rapid tree growth with respect to the last 400 years in response to climate warming, northeastern Tibetan Plateau. Int J Climatol 27:1497–1503CrossRefGoogle Scholar
  19. Gu Z, Chen J, Shi P, Xu M (2007) Correlation analysis of Normalized Different Vegetation Index (NDVI) difference series and climate variables in the Xilingole steppe, China from 1983 to 1999. Front Biol China 2:218–228CrossRefGoogle Scholar
  20. Guetter PJ, Kutzbach JE (1990) A modified Köppen classification applied to model simulations of glacial and interglacial climates. Clim Change 16:193–215CrossRefGoogle Scholar
  21. Hargrove WW, Hoffman FM (1999) Using multivariate clustering to characterize ecoregion borders. Comput Sci Eng 1:18–25CrossRefGoogle Scholar
  22. Hargrove WW, Hoffman FM (2004) Potential of multivariate quantitative methods for delineation and visualization of ecoregions. Environ Manage 34:S39–S60CrossRefGoogle Scholar
  23. Hartigan JA (1975) Clustering algorithms. Wiley, New YorkGoogle Scholar
  24. He HS, Hao Z, Mladenoff DJ, Shao G, Hu Y, Chang Y (2005) Simulating forest ecosystem response to climate warming incorporating spatial effects in north-eastern China. J Biogeogr 32:2043–2056CrossRefGoogle Scholar
  25. Hobbs RJ, Arico S, Aronson J, Baron JS, Bridgewater P, Cramer VA, Epstein PR, Ewel JJ, Klink CA, Lugo AE, Norton D, Ojima D, Richardson DM, Sanderson EW, Valladares F, Vila M, Zamora R, Zobel M (2006) Novel ecosystems: theoretical and management aspects of the new ecological world order. Glob Ecol Biogeogr 15:1–7CrossRefGoogle Scholar
  26. Hoffman FM, Hargrove Jr WW, Erickson DJ III, Oglesby RJ (2005) Using clustered climate regime to analyze and compare predictions from fully coupled general circulation models. Earth Interact 9:1–27CrossRefGoogle Scholar
  27. Jin ZZ, Ou XK (2000) Jinshajiang vegetation of dry-hot valleys, Yunnan and Sichuan. In: Jin ZZ, Ou XK (eds) Yuanjiang, Nujiang, Jinshajiang, Lancangjiang vegetation of dry-hot valley. Yunnan University Press and Yunnan Science & Technology Press, KunmingGoogle Scholar
  28. Kalvová J, Halenka T, Bezpalcová K, Nemešová I (2003) Köppen climate types in observed and simulated climates. Stud Geophys Geod 47:185–202CrossRefGoogle Scholar
  29. Köppen W (1931) Grundriss der Kilmakunde. Walter de Gruyter, BerlinGoogle Scholar
  30. Köppen W (ed) (1936) Das Geographische System der Klimate. Gerbrüder Bonträger, BerlinGoogle Scholar
  31. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen–Geiger climate classification updated. Meteorol Z 15:259–263CrossRefGoogle Scholar
  32. Leng W, He HS, Bu R, Dai L, Hu Y, Wang X (2008) Predicting the distributions of suitable habitat for three larch species under climate warming in Northeastern China. For Ecol Manage 254:420–428CrossRefGoogle Scholar
  33. Liu JY, Zhuang DF, Luo D, Xiao X (2003) Land-cover classification of China: integrated analysis of AVHRR imagery and geophysical data. Int J Remote Sens 24:2485–2500CrossRefGoogle Scholar
  34. Liu R, Liang S, Liu J, Zhuang D (2006) Continuous tree distribution in China: a comparison of two estimates from moderate-resolution imaging spectroradiometer and Landsat data. J Geophys Res 111. doi:10.1029/2005JD006039
  35. Lugo AE, Brown SL, Dodson R, Smith TS, Shugart HH (1999) The Holdridge life zones of the conterminous United States in relation to ecosystem mapping. J Biogeogr 26:1025–1038CrossRefGoogle Scholar
  36. Metzger MJ, Bunce RGH, Jongman RHG, Mucher CA, Watkins JW (2005) A climatic stratification of the environment of Europe. Glob Ecol Biogeogr 14:549–563CrossRefGoogle Scholar
  37. Mitchell TD, Carter TR, Jones PD, Hulme M, New M (2004) A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100) Working Paper 55. Tyndall Centre for Climate, NorwichGoogle Scholar
  38. Morgan JA, Milchunas DG, LeCain DR, West M, Mosier AR (2007) Carbon dioxide enrichment alters plant community structure and accelerates shrub growth in the shortgrass steppe. Proc Natl Acad Sci 104:14724–14729CrossRefGoogle Scholar
  39. Nakićenović N, Swart R (eds) (2000) Emissions scenarios special report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  40. Neilson RP (1995) A model for predicting continental-scale vegetation distribution and water balance. Ecol Appl 5:362–385CrossRefGoogle Scholar
  41. Ohlemüller R, Gritti ES, Sykes MT, Thomas CD (2006) Towards European climate risk surfaces: the extent and distribution of analogous and non-analogous climates 1931–2100. Glob Ecol Biogeogr 15:395–405CrossRefGoogle Scholar
  42. Omernik JM (1995) Ecoregions: a spatial framework for environmental management. In: Davis W, Simon TP (eds) Biological assessment and criteria: tools for water resource planning and decision making. Publishing, Boca RatonGoogle Scholar
  43. Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parameterizations in the Hadley Centre climate model—HadCM3. Clim Dyn 16:123–146CrossRefGoogle Scholar
  44. Prentice KC (1990) Bioclimatic distribution of vegetation for general circulation model studies. J Geophys Res 95:11811–11830CrossRefGoogle Scholar
  45. Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134CrossRefGoogle Scholar
  46. Ricciardi A (2007) Are modern biological invasions an unprecedented form of global change? Conserv Biol 21:329–336CrossRefGoogle Scholar
  47. Saxon E, Baker B, Hargrove W, Hoffman F, Zganjar C (2005) Mapping environments at risk under different global climate change scenarios. Ecol Lett 8:53–60CrossRefGoogle Scholar
  48. Shaver GR, Canadell J, Chapin FS, Gurevitch J, Harte J, Henry G, Ineson P, Jonasson S, Melillo J, Pitelka L, Rustad L (2000) Global warming and terrestrial ecosystems: a conceptual framework for analysis. Bioscience 50:871–882CrossRefGoogle Scholar
  49. Shi XZ, Yu DS, Warner ED, Pan XZ, Peterson GW, Gong ZG, Weindorf DC (2004) Soil database of 1:1,000,000 digital soil survey and reference system of the Chinese genetic soil classification system. Soil Surv Horiz 45:129–136Google Scholar
  50. Song M, Zhou C, Hua O (2004) Distribution of dominant tree species on the Tibetan Plateau under current and future climate scenarios. Mt Res Dev 24:166–173CrossRefGoogle Scholar
  51. Song M, Zhou C, Hua O (2005) Simulated distribution of vegetation types in response to climate change on the Tibetan Plateau. J Veg Sci 16:341–350CrossRefGoogle Scholar
  52. Trewartha GT, Horn LH (1980) An introduction to climate. McGraw-Hill, New YorkGoogle Scholar
  53. U. S. Geological Survey (1996) GTOPO3. http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html. Cited 15 July 2005
  54. Wang S, Gong D (2000) Enhancement of the warming trend in China. Geophys Res Lett 27:2581–2584CrossRefGoogle Scholar
  55. Wang M, Overland JE (2005) Detecting arctic climate change using Köppen climate classification. Clim Change 67:43–62CrossRefGoogle Scholar
  56. Wang A, Price DT (2007) Estimating global distribution of boreal, temperate, and tropical tree plant functional types using clustering techniques. J Geophys Res 112:G01024. doi:10.1029/2006JG000252 CrossRefGoogle Scholar
  57. Washington WM, Weatherly JW, Meehl GA, Semtner AJ Jr, Bettge TW, Craig AP, Strand WG Jr, Arblaster JM, Wayland VB, James R, Zhang Y (2000) Parallel climate model (PCM) control and transient simulations. Clim Dyn 16:755–774CrossRefGoogle Scholar
  58. Weltzin JF, Loik ME, Schwinning S, Williams DG, Fay PA, Haddad BM, Harte J, Huxman TE, Knapp AK, Lin G, Pockman WT, Shaw MR, Small EE, Smith MD, Smith SD, Tissue DT, Zak JC (2003) Assessing the response of terrestrial ecosystems to potential changes in precipitation. Bioscience 53:941–952CrossRefGoogle Scholar
  59. Williams JW, Jackson ST (2007) Novel climates, no-analog communities, and ecological surprises. Front Ecol Environ 5:475–482CrossRefGoogle Scholar
  60. Williams JW, Jackson ST, Kutzbach JE (2007) Projected distributions of novel and disappearing climates by 2100 AD. PNAS 104:5738–5742CrossRefGoogle Scholar
  61. Woodward FI (1987) Climate and plant distribution. Cambridge University Press, CambridgeGoogle Scholar
  62. Yong SC, Feoli E (1991) A numerical phytoclimatic classification of China. Int J Biometeorol 35:76–87CrossRefGoogle Scholar

Copyright information

© The Nature Conservancy 2009

Authors and Affiliations

  • Barry Baker
    • 1
    • 5
  • Henry Diaz
    • 2
  • William Hargrove
    • 3
  • Forrest Hoffman
    • 4
  1. 1.Natural Resource Ecology Lab, B256Colorado State UniversityFort CollinsUSA
  2. 2.NOAA/ESRL/CIRESBoulderUSA
  3. 3.Eastern Forest Threat Assessment Center, USDA Forest ServiceSouthern Research StationAshevilleUSA
  4. 4.Computer Science & Mathematics DivisionOak Ridge National LaboratoryOak RidgeUSA
  5. 5.The Nature ConservancyCanyonlands Research CenterMoabUSA

Personalised recommendations