Advertisement

Climatic Change

, Volume 94, Issue 3–4, pp 247–259 | Cite as

The future of the past—an earth system framework for high resolution paleoclimatology: editorial essay

  • M. K. HughesEmail author
  • C. M. Ammann
Article

Abstract

High-resolution paleoclimatology is the study of climate variability and change on interannual to multi-century time scales. Its primary focus is the past few millennia, a period lacking major shifts in external climate forcing and earth system configuration. Large arrays of proxy climate records derived from natural archives have been used to reconstruct aspects of climate in recent centuries. The main approaches used have been empirical and statistical, albeit informed by prior knowledge both of the physics of the climate, and of the processes imprinting climate information in the natural archives. We propose a new direction, in which emerging tools are used to formalize the combination of process knowledge and proxy climate records to better illuminate past climate variability on these time scales of great relevance to human concerns.

Keywords

Data Assimilation Tree Ring Ensemble Member Climate Information Proxy Record 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ammann CM, Wahl ER (2007) Importance of the geophysical context for statistical evaluation of climate reconstruction procedures. Clim Change 85:71–88. doi: 10.1007/s10584-007-9276-x CrossRefGoogle Scholar
  2. Ammann CM, Joos F, Schimel D, Otto-Bliesner BL, Tomas R (2007) Solar influence on climate during the past millennium: results from transient simulations with the NCAR climate system model. Proc Natl Acad Sci U S A 104(10):3713–3718CrossRefGoogle Scholar
  3. Banerjee S, Carlin B, Gelfand A (2004) Hierarchical modeling and analysis for spatial data. Chapman and Hall, New YorkGoogle Scholar
  4. Baumgartner TR, Michaelsen J, Thompson LG, Shen GT, Soutar A, Casey RE (1989) The recording of internannual climatic change by high-resolution natural systems: tree-rings, coral bands, glacial ice layers, and marine varves. Geophys Monogr 55:1–14Google Scholar
  5. Briffa KR, Shishov VV, Melvin TM, Vaganov EA, Grudd H, Hantemirov RM, Eronen M, Naurzbaev MM (2008) Trends in recent temperature and radial tree growth spanning 2000 years across northwest Eurasia. Philos Trans R Soc B 363:2271–2284. doi: 10.1098/rstb.2007.2199 CrossRefGoogle Scholar
  6. Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289 (5477):270. doi: 10.1126/science.289.5477.270 CrossRefGoogle Scholar
  7. Dirren S, Hakim G (2005) Toward the assimilation of time-averaged observations. Geophys Res Lett 32(4):L04804. doi: 10.1029/2004GL021444 CrossRefGoogle Scholar
  8. Evans MN, Reichert BK, Kaplan A, Anchukaitis KJ, Vaganov EA, Hughes MK, Cane MA (2006) A forward modeling approach to paleoclimatic interpretation of tree-ring data. J Geophys Res 111:G03008. doi: 10.1029/2006JG000166 CrossRefGoogle Scholar
  9. Fritts HC (1976) Tree rings and climate. Academic, LondonGoogle Scholar
  10. Fritts HC (1991) Reconstructing large-scale climatic patterns from tree-ring data. The University of Arizona Press, TucsonGoogle Scholar
  11. Fritts HC, Lofgren GR, Gordon GA (1980) Past climate reconstructed from tree-rings. J Interdiscip Hist 10:773–793CrossRefGoogle Scholar
  12. Goosse H, Renssen H, Timmermann A, Bradley RS, Mann ME (2006) Using paleoclimate proxy-data to select optimal realisations in an ensemble of simulations of the climate of the past millennium. Clim Dyn 27(2–3):165–184. doi: 10.1007/s00382-006-0128-6 CrossRefGoogle Scholar
  13. Graham N, Hughes MK (2007) Reconstructing the Medieval Mono Lake low stands. Holocene 17:1197–1210CrossRefGoogle Scholar
  14. Graham NE, Hughes MK, Ammann CM, Cobb KM, Hoerling MP, Kennett DJ, Kennett JP, Rein B, Stott L, Wigand PE, Xu T (2007) Tropical pacific—mid-latitude teleconnections in medieval times. Clim Change 83:241–285. doi: 10.1007/s10584-007-9239-2 CrossRefGoogle Scholar
  15. Haslett J, Salter-Townshend M, Wilson SP, Bhattacharya S, Whiley M, Allen JRM, Huntley B, Mitchell JFJ (2006) Bayesian paleoclimate reconstruction. J R Stat Soc A 169(Part 3):1–36Google Scholar
  16. Hoffmann G, Cuntz M, Werner M, Jouzel J (2005) A systematic comparison between the IAEA/GNIP isotope network and atmospheric general circulation models: how much climate information is in the water isotopes? In: Aggarwal PK, Gat JR, Klaus FO (eds) Isotopes in the water cycle—past, present and future of a developing science. Springer, Dordrecht, The NetherlandsGoogle Scholar
  17. Hughes MK (2002) Dendrochronology in climatology—the state of the art. Dendrochronologia 20:95–116CrossRefGoogle Scholar
  18. Jansen EJ et al (2007) Palaeoclimate. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UKGoogle Scholar
  19. Jones PD et al (2009) High-resolution paleoclimatology of the last millennium: a review of current status and future prospects. Holocene 19(1):3–49CrossRefGoogle Scholar
  20. Lamb HH (1976) Climate: present, past and future. climatic history and the future. Methuen, LondonGoogle Scholar
  21. Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392(6678):779–787CrossRefGoogle Scholar
  22. Mann ME, Gille E, Bradley RS, Hughes MK, Overpeck JT, Keimig FT, Gross W (2000) Global temperature patterns in past centuries: an interactive presentation. Earth Interact 4-4:1–29CrossRefGoogle Scholar
  23. Mann ME, Zhang Z, Hughes MK, Bradley RS, Miller S, Rutherford S, Fenbiao Ni (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci U S A 105:13252–13257CrossRefGoogle Scholar
  24. Mitchell JM (1976) An overview of climatic variability and its causal mechanisms. Quat Res 6:481–493CrossRefGoogle Scholar
  25. Schmidt GA, LeGrande AN, Hoffmann G (2007) Water isotope expressions of intrinsic and forced variability in a coupled ocean–atmosphere model. J Geophys Res 112:D10103. doi: 10.1029/2006JD007781 CrossRefGoogle Scholar
  26. Selten FM, Branstator G, Kliphuis M, Dijkstra HA (2004) Tropical origins for recent and future Northern Hemisphere climate change. Geophys Res Lett 31. doi: 10.1029/2004GL020739 Google Scholar
  27. Vaganov EA, Hughes MK, Shashkin AV (2006) Growth dynamics of conifer tree rings: images of past and future environments. Springer, BerlinGoogle Scholar
  28. Wikle CK, Berliner LM (2005) Combining information across spatial scales. Technometrics 47:80–91CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Laboratory of Tree-Ring ResearchUniversity of ArizonaTucsonUSA
  2. 2.National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations