Space-based assessment of glacier fluctuations in the Wakhan Pamir, Afghanistan

Abstract

Alpine glaciers directly and indirectly respond to climate and play a significant role in mountain geodynamics. Many glaciers around the world have been found to be retreating and downwasting, although these patterns are highly variable due to variations in local topography, regional climate and ice-flow dynamics. Unfortunately, limited information is available on glacier fluctuations in the Wakhan Pamir of Afghanistan, and no data exist from there in the World Glacier Monitoring Services (WGMS) database. Our general circulation model (GCM) climate simulations represent a double carbon-dioxide-loading scenario, and results suggest that glaciers in this region should be downwasting and retreating. Therefore, as part of the Global Land Ice Measurements from Space (GLIMS) project, we evaluated ASTER and Landsat MSS data to assess glacier fluctuations from 1976–2003, in the Wakhan Corridor of Afghanistan. We sampled 30 alpine valley, compound alpine valley or cirque-type glaciers of varying size and orientation. Results indicate that 28 glacier-terminus positions have retreated, and the largest average retreat rate was 36 m year − 1. Satellite image analysis reveals non-vegetated glacier forefields formed prior to 1976, as well as geomorphological evidence for apparent glacier-surface downwasting after 1976. Climatic conditions and glacier retreat have resulted in disconnection of tributary glaciers to their main trunk, the formation of high-altitude lakes, and an increased frequency and size of proglacial lakes. Collectively, these results suggest increased hazard potential in some basins and a negative regional mass balance.

This is a preview of subscription content, access via your institution.

References

  1. Aizen VB, Kuzmichenok VA, Surazakov AB, Aizen EM (2006) Glacier changes in central and northern Tien Shan during the last 140 years based on surface and remote sensing data. Ann Glaciol 43:1–13

    Google Scholar 

  2. Archer DR, Fowler HJ (2004) Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications. Hydrol and Earth Sys Sc 8(1):47–61

    Google Scholar 

  3. Berger A, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quat Sc Rev 10:297–317

    Article  Google Scholar 

  4. Bishop MP, Barry RG, Bush ABG et al (2004) Global land-ice measurements from space (GLIMS): remote sensing and GIS investigations of the Earth’s cryosphere. Geocarto Int 19(2):57–84

    Article  Google Scholar 

  5. Braslau D (1972) The glaciers of Keshnikhan. In: Gratzl K (ed) Hindukusch-Osterreichische Forschungs expedition in den Wakhan 1970. Akademische Druck- u. Verlagsanstalt, Graz, pp 112–116

    Google Scholar 

  6. Breckle SW, Frey W (1976a) Die hochsten Berge im Zentralen Hindukusch. Afghanistan Journal 3(3):91–94

    Google Scholar 

  7. Breckle SW, Frey W (1976b) Beobachtungen zur heutigen Vergletscherung der Hauptkette des Zentralen Hindukusch. Afghan J 3(3):95–100

    Google Scholar 

  8. Buchroithner MF (1978) Zur geologie des Afghanischen Pamir. In: Senarclens de Grancy R and Kostka R (eds) Grosser Pamir. Adademische Druck-u. Verlagsanstalt, Graz, pp 85–118

    Google Scholar 

  9. Bush ABG (2007) Extratropical influences on the El Niño Southern Oscillation through the Late Quaternary. J Climate 20:788–800

    Article  Google Scholar 

  10. Gilbert O, Jamieson D, Lister H, Pendlington A (1969) Regime of an Afghan glacier. J Glaciology 8(52):51–65

    Google Scholar 

  11. Grötzbach E (1990) Afghanistan: eine geografische Landeskunde, (Wissenschaftliche Länderkunden 37). Wissenschaftliche Buchgesellschaft, Darmstadt, p 449

    Google Scholar 

  12. Gupta RP, Haritashya UK, Singh P (2005) Mapping dry/wet snow cover in the Indian Himalayas using IRS multispectral imagery. Rem Sens Environ 97:458–469

    Google Scholar 

  13. Haritashya UK, Singh P, Kumar N, Singh Y (2006) Hydrological importance of an unusual hazard in a mountainous basin: flood and landslide. Hydrol Proc 20:3147–3154

    Article  Google Scholar 

  14. Hewitt K (2005) The Karakoram anomaly? Glacier Expansion and the ‘Elevation Effect,’ Karakoram Himalaya. Mt Res Dev 25(4):332–340

    Article  Google Scholar 

  15. Indermühle A, Stocker TF, Joos F, Fischer H, Smith HJ, Wahlen M, Deck B, Mas-Troianni D, Tschumi J, Blunier T, Meyer R, Stauffer B (1999) Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398:121–126

    Article  Google Scholar 

  16. Kargel JS, Abrams MJ, Bishop MP et al (2005) Multispectral imaging contributions to global land ice measurements from space. Rem Sens Environ 99:187–219

    Article  Google Scholar 

  17. Khromova TE, Osipova GB, Tsvetkov DG, Dyurgerov MB, Barry RG (2006) Changes in glacier extent in the eastern Pamir, Central Asia, determined from historical data and ASTER imagery. Rem Sens Environ 102:24–32

    Article  Google Scholar 

  18. Kotlyakov VM (Editor in Chief) (1997) The World Atlas of Snow and Ice Resources. 3 volumes, Institute of Geography, Russian Academy of Sciences, Moscow

    Google Scholar 

  19. Kotlyakov VM, Lebedeva IM (1998) Melting and evaporation of glacier systems in the Hindu Kush–Himalayan region and their possible changes as a result of global warming. In: Chalise SR, Herrmann A, Khanal NR, Lang H, Molnar L, Pokhrel AP (eds) Ecohydrology of high mountain areas. ICIMOD, Kathmandu pp 367–375

    Google Scholar 

  20. Kravtsova VI, Tsarev BK (1997) Snow cover and avalanches of Afghanistan (in Russian). Tashkent, p 136

  21. Lalande P, Herman NM, Zillhardt J (1974) Cartes climatiques de l’Afghanistan. L’Institut de Meteorologie, Kaboul, Publication no. 4, v 1, text, 47 p, v 2, maps

  22. Lebedeva IM (1997) Change of the glacial runoff of the Hindu Kush rivers under the global climate warming (in Russian). MGI (Data of Glaciological Studies) 83:65–72

    Google Scholar 

  23. Patzelt G (1978) Gletscherkundliche Untersuchlungen im ‘Grossen Pamir’. In: Grancy R and Kostka R (eds) Grosser Pamir. Akademische Druck-u, Graz, pp 131–149

    Google Scholar 

  24. Paul F, Kääb A, Max M, Kellenberger T, Haeberli W (2004) Rapid disintegration of Alpine glaciers observed with satellite data. Geophys Res Lett 31:L21402. doi:10.1029/2004GL020816

    Article  Google Scholar 

  25. Paul F, Kääb A, Haeberli W (2007) Recent glacier changes in the Alps observed by satellite: Consequences for future monitoring strategies. Glob Planet Change 56(1-2):111–122

    Article  Google Scholar 

  26. Porter SC (1985) Extent of Late-Pleistocene glaciers in Afghanistan based on interpretation of Landsat imagery. In: Agrawal DP, Kusumgar S, Krishnamurthy RK (eds) Climate and geology of Kashmir and central Asia: The last four million years. Current Trends in Geology vol VI. Today & Tomorrow’s Printers and Publishers, New Delhi, pp 191–195

    Google Scholar 

  27. Salomonson VV, Appel I (2004) Estimating fractional snow cover from MODIS using the normalized difference snow index. Rem Sens Environ 89:351–360

    Article  Google Scholar 

  28. Shroder JF Jr (1980) Special problems of glacial inventory in Afghanistan. Hydrol Sc Bull 126:142–147, World Glacier Inventory Proceedings, Reideralp Workshop, September 1978 (IAHS-AISH)

    Google Scholar 

  29. Shroder JF Jr (1989) Glacierized areas of Afghanistan. In: Haeberli W, Bosch H, Scherler K, Ostrem G, Wallen CC (eds) World Glacier Inventory, Status 1988. IAHS (ICSI)-UNEP-UNESCO, Teufen, pp C39–C40, C346–C353

    Google Scholar 

  30. Shroder JF Jr, Bishop MP (2007) Satellite-image analysis of glaciers of Afgghanistan. In: Williams RS Jr, Ferrigno JG (eds) Satellite image atlas of glaciers. US Geological Survey, Reston, pp 1386-F, Professional Paper

    Google Scholar 

  31. Sivall TI (1977) Synoptic-climatological study of the Asian Summer monsoon in Afghanistan. Geogr Ann 59A:67–87

    Article  Google Scholar 

  32. Solomina O, Barry R, Bodnya M (2004) The retreat of Tien Shan glaciers (Kyrgyzstan) since the little ice age estimated from aerial photographs, lichenometric and historical data. Geogr Ann 86A:205–215

    Article  Google Scholar 

  33. Tsarev BK, Getler MI, Pyatova RB (1986) Some properties of stable snow cover regime in the Hindu Kush Mountains (in Russian). MGI (Data of Glaciological Studies) 56:73–78

    Google Scholar 

  34. von Wissman H (1959) Die Heutige Vergletscherung und Schneegrenze in Hoch Asien. Abhandlung der Mathematisch – Naturwissenschaftlichen klasse 14, Akademie der Wissenschaften und der literatur in Mainz. Steiner Verlag, Wiesbaden, pp 1103–1431

    Google Scholar 

  35. WMO (1981) Climatic atlas of Asia. WMO, Geneva, p 28

    Google Scholar 

  36. Zabirov RD (1955) Oledenenie Pamira. Nauka, Moscow

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Umesh K. Haritashya.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Haritashya, U.K., Bishop, M.P., Shroder, J.F. et al. Space-based assessment of glacier fluctuations in the Wakhan Pamir, Afghanistan. Climatic Change 94, 5–18 (2009). https://doi.org/10.1007/s10584-009-9555-9

Download citation

Keywords

  • Lateral Moraine
  • Glacier Retreat
  • Alpine Glacier
  • Normalize Difference Snow Index
  • Large Glacier