Climate benefits of changing diet

Abstract

Climate change mitigation policies tend to focus on the energy sector, while the livestock sector receives surprisingly little attention, despite the fact that it accounts for 18% of the greenhouse gas emissions and for 80% of total anthropogenic land use. From a dietary perspective, new insights in the adverse health effects of beef and pork have lead to a revision of meat consumption recommendations. Here, we explored the potential impact of dietary changes on achieving ambitious climate stabilization levels. By using an integrated assessment model, we found a global food transition to less meat, or even a complete switch to plant-based protein food to have a dramatic effect on land use. Up to 2,700 Mha of pasture and 100 Mha of cropland could be abandoned, resulting in a large carbon uptake from regrowing vegetation. Additionally, methane and nitrous oxide emission would be reduced substantially. A global transition to a low meat-diet as recommended for health reasons would reduce the mitigation costs to achieve a 450 ppm CO2-eq. stabilisation target by about 50% in 2050 compared to the reference case. Dietary changes could therefore not only create substantial benefits for human health and global land use, but can also play an important role in future climate change mitigation policies.

This is a preview of subscription content, log in to check access.

References

  1. Aiking H, De Boer J, Vereijken J (eds) (2006) Sustainable protein production and consumption: pigs or peas? Springer, Dordrecht

    Google Scholar 

  2. Alcamo J, Kreileman E, Krol M, Leemans R, Bollen J, van Minnen JG, Schaeffer M, Toet S, de Vries B (1998) Global modelling of environmental change: an overview of IMAGE 2.1. In: Alcamo J, Leemans R, Kreileman E (eds) Global change scenarios of the 21st century. Results from the IMAGE 2.1 model. Elsevier, Oxford, pp 3–94

  3. Asner GP, Elmore AJ, Olander LP, Martin RE, Harris AT (2004) Grazing systems, ecosystem response, and global change. Annu Rev Environ Res 29:261–299

    Article  Google Scholar 

  4. Bouwman AF, van der Hoek KW, Eickhout B, Soenario I (2005) Exploring changes in world ruminant production systems. Agric Syst 84:121–153. doi:110.1016 j.agsy 2004.1005.1006

    Article  Google Scholar 

  5. Bruinsma JE (2003) World agriculture: towards 2015/2030. An FAO perspective. Earthscan, London

  6. Crutzen PJ, Aselmann I, Seiler W (1986) Methane production by domestic animals, wild ruminants, other herbivorous fauna and humans. Tellus 38B:271–284

    Article  Google Scholar 

  7. den Elzen MGJ, van Vuuren DP (2007) Peaking profiles for achieving long-term temperature targets with more likelihood at lower costs. Proc Natl Acad Sci U S A 104:17931–17936

    Article  Google Scholar 

  8. den Elzen MGJ, Meinshausen M, van Vuuren DP (2007) Multi-gas emission envelopes to meet greenhouse gas concentration targets: costs versus certainty of limiting temperature increase. Glob Environ Change 17:260–280

    Article  Google Scholar 

  9. Ding E (2006) Optimal diets for the prevention of stroke. Semin Neurol 26:11–23

    Article  Google Scholar 

  10. Eickhout B, van Meijl H, Tabeau A, Stehfest E (2008) The impact of environmental and climate constraints on global food supply. In: Hertel TW, Rose S, Tol RSJ (eds) GTAP Working Paper No. 47 Chapter 9 of the forthcoming book economic analysis of land use in global climate change policy

  11. European Communities (2006) Facts & figures on the CFP: basic data on the common fisheries policy. Office for Official Publications of the European Communities

  12. FAO (2006) World agriculture: towards 2030/2050. Prospects for food, nutrition, agriculture and major commodity groups, Food and Agriculture Organization of the United Nations, Global Perspective Studies Unit, Rome

  13. FAO (2007) FAOSTAT database collections (www.apps.fao.org), Food and Agriculture Organization of the United Nations, Rome

  14. Fiala N (2008) Meeting the demand: an estimation of potential future greenhouse gas emissions from meat production. Ecol Econ 67(4):519–525

    Google Scholar 

  15. Fisher B, Nakicenovic N, Alfsen K, Corfee Morlot J, de la Chesnaye F, Hourcade J-C, Jiang K, Kainuma M, La Rovere E, Matysek A, Rana A, Riahi K, Richels R, Rose S, van Vuuren DP, Warren R, Ambrosi P, Birol F, Bouille D, Clapp C, Eickhout B, Hanaoka T, Mastrandrea MD, Matsuoko Y, O’Neill B, Pitcher H, Rao S, Toth F (2007) Issues related to mitigation in the long-term context. In: Metz B, Davidson O, Bosch P, Dave R, Meyer L (eds) Climate change 2007. Mitigation of climate change. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York, pp 169–250

    Google Scholar 

  16. Forrest JC, Aberle ED, Hedrick BB, Judge MD, Markel RA (1995) Principle of meat science. Freeman, San Francisco

    Google Scholar 

  17. Hulme M, Wigley T, Barrow E, Raper S, Centella A, Smith S, Chipanski A (2000) Using a climate scenario generator for vulnerability and adaptation assessments: MAGICC and SCENGEN version 2.4 workbook. Climate Research Unit, Norwich, UK

    Google Scholar 

  18. IEA (2006) World energy outlook 2006. International Energy Agency, Paris

  19. IPCC (2006) IPCC guidelines for national greenhouse gas inventories, IPCC NGGIP programme, IPCC-TSU/IGES. Published by the Institute for Global Environmental Strategies (IGES), Hayama, Japan on behalf of the IPCC, Hayama, Japan

  20. IPCC (2007a) Climate change 2007. Mitigation of climate change. In: Metz B, Davidson O, Bosch P, Dave R, Meyer L (eds) Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York

    Google Scholar 

  21. IPCC (2007b) Climate change 2007. The physical science basis. In: Solomon S, Chin D, Manning M, Marquis M, Averyt K, Tignor MMB, Le Roy Miller H Jr, Chen Z (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York

    Google Scholar 

  22. Kantor LS, Lipton K, Manchester A, Oliveira V (1997) Estimating and addressing America’s food losses. Food Review 20(1):2–12

    Google Scholar 

  23. Klein Goldewijk K, van Minnen JG, Kreileman GJJ, Vloedbeld M, Leemans R (1994) Simulation of the carbon flux between the terrestrial environment and the atmosphere. Water Air Soil Pollut 76:199–230

    Article  Google Scholar 

  24. Klein Goldewijk K, van Drecht G, Bouwman AF (2007) Mapping contemporary global cropland and rangeland on a 5’ resolution grid. J Land Use Sci 2:167–190

    Google Scholar 

  25. Leemans R, van der Born GJ (1994) Determining the potential global distribution of natural vegetation, crops and agricultural productivity. Water Air Soil Pollut 76:133–161

    Article  Google Scholar 

  26. Li D, Siriamornpun S, Wahlqvist ML, Mann NJ, Sinclair AJ (2005) Lean meat and heart health. Asia Pac J Clin Nutr 14:113–119

    Google Scholar 

  27. Lucas P, van Vuuren DP, Olivier JGJ, den Elzen MGJ (2006) Long-term reduction potential of non-CO2 greenhouse gases. Environ Sci Policy 10:85–103

    Article  Google Scholar 

  28. McMichael AJ, Powles JW, Butler CD, Uauy R (2007) Food, livestock production, energy, climate change, and health. Lancet 370:1253–263. doi:10.1016/S0140-6736(07)61256-2

    Article  Google Scholar 

  29. Meinshausen M, Wigley TM, van Vuuren DP, den Elzen MGJ, Swart R (2006) Multi-gas emissions pathways to meet climate targets. Clim Change 75:151–194

    Article  Google Scholar 

  30. MNP (2006) Integrated modelling of global environmental change. An overview of IMAGE 2.4. Netherlands Environmental Assessment Agency (MNP), The Netherlands

  31. Moreira PA, Padrao PD (2004) Educational and economic determinants of food intake in Postuguese adults: a cross-sectional survey. BMC Public Health 4:NIL 1–NIL 11

    Article  Google Scholar 

  32. Nordhaus WD (2007) The challenge of global warming: economic models and environmental policy. Yale University, New Haven

    Google Scholar 

  33. OECD (2008) OECD environmental outlook to 2030, 2008. OECD, Paris

    Google Scholar 

  34. Prentice IC, Cramer W, Harrison S, Leemans R, Monserud RA, Solomon AM (1992) A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134

    Article  Google Scholar 

  35. Schlesinger ME, Malyshev S, Rozanov EV, Yang F, Andronova NG, De Vries B, Grübler A, Jiang K, Masui T, Morita T, Nakicenovic N, Penner J, Pepper W, Sankovski A, Zhang Y (2000) Geographical distributions of temperature change for scenarios of greenhouse gas and sulphur dioxide emissions. Technol Forecast Soc Change 65:167–193

    Article  Google Scholar 

  36. Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T-H (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240

    Article  Google Scholar 

  37. Sitch S, Brovkin V, Von Bloh W, van Vuuren DP, Eickhout B, Ganopolski A (2005) Impacts of future land cover changes on atmospheric CO2 and climate. Glob Biogeochem Cycles 19:GB2013

    Article  Google Scholar 

  38. Smil V (2002) Eating meat: evolution, patterns, and consequences. Popul Dev Rev 28:599–639

    Article  Google Scholar 

  39. Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C (2006) Livestock’s long shadow. Environmental issues and options. Food and Agriculture Organization of the United Nations, Rome

  40. Stern N (2006) The economics of climate change, the Stern review. Cambridge University Press, Cambridge, UK

    Google Scholar 

  41. Suttie JM, Reynolds SG, Batello C (2005) Grasslands of the world. Report No. Plant Production and Protection Series 34. Food and Agriculture Organization of the United Nations, Rome

  42. UK Treasury (2003) The Green Book: appraisal and evaluation in central government. TSO, London

    Google Scholar 

  43. van Minnen JG (2008) The terrestrial carbon cycle on the regional and global scale. Modeling, uncertainties and policy relevance, PhD thesis. Wageningen University Research Centre (WUR), Wageningen

  44. van Minnen JG, Leemans R, Ihle F (2000) Assessing consequences of dynamic changes in global vegetation patterns, using the IMAGE 2.1 model. Glob Chang Biol 6:595–611

    Article  Google Scholar 

  45. van Vuuren DP, van Ruijven B, Hoogwijk MM, Isaac M, De Vries HJM (2006) TIMER 2: model description and application. In: Bouwman AF, Kram T, Klein Goldewijk K (eds) Integrated modelling of global environmental change. An overview of IMAGE 2.4. Netherlands Environmental Assessment Agency (MNP), publication number 500110002/2006, Bilthoven

  46. van Vuuren DP, den Elzen M, Lucas P, Eickhout B, Strengers B, van Ruijven B, Wonink S, van Houdt R (2007) Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim Change 81:119–159. doi:10.1007/s10584-006-9172-9

    Article  Google Scholar 

  47. WCRF, AICR (2007) Food, nutrition, physical activity and the prevention of cancer, a global perspective. World Cancer Research Fund/American Institute for Cancer Research, Washington D.C. AICR

  48. Weitzman M (2001) Gamma discounting. Am Econ Rev 91:261–271

    Article  Google Scholar 

  49. Weyant JP (2000) An introduction to the economics of climate change policy. Pew Center on Global Climate Change, Arlington, VA

  50. Weyant J, Delachesnaye P, Blanford G (2006) An overview of EMF-21: multigas mitigation and climate change. Energy J Special Issue 3:1–32

    Google Scholar 

  51. Wigley TML, Raper SCB (1992) Implications for climate and sea level of revised IPCC emissions scenarios. Nature 357:293–300

    Article  Google Scholar 

  52. Willett WC (2001) Eat, drink, and be healthy: the Harvard Medical School guide to healthy eating. Simon & Schuster, New York

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elke Stehfest.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stehfest, E., Bouwman, L., van Vuuren, D.P. et al. Climate benefits of changing diet. Climatic Change 95, 83–102 (2009). https://doi.org/10.1007/s10584-008-9534-6

Download citation

Keywords

  • Climate Policy
  • Abatement Cost
  • Dietary Variant
  • Reference Case
  • Reference Scenario