Climatic Change

, Volume 94, Issue 3–4, pp 399–408 | Cite as

Palaeolimnological studies and ancient maps confirm secular climate fluctuations in Amazonia

  • Rubén J. LaraEmail author
  • Marcelo C. L. Cohen


Secular Amazon discharge oscillations were investigated comparing information from ancient cartography, satellite images, palaeovegetation, sediments, anthropology and climate, focusing on the evolution of Marajó Island in the Amazon estuary. Four phases were identified. (1) 800–1200 a.d.: Amazon discharge increased gradually and eastern Marajó was a vegetation-free tidal plain with energy oscillations. (2) 1200–1350 a.d. was a dry period with lower river discharges, lower energy, increasing water salinities and maximum mangrove extension, coinciding with the extinction of chiefdoms in Marajó. (3) 1350–1540 a.d.: Amazon discharge increased rapidly, inducing a dominance of freshwater vegetation, inundation of east Marajó and likely a regional rise of relative sea-level (RSL). (4) 1540–1750 a.d.: RSL decreased, coinciding with an El Niño-related intense drought ca. 1600 a.d. Emergence of eastern Marajó was rapid and completed in the eighteenth century, under RSL stabilization to current values. The approach used provided evidence of intermittent large changes in Amazon climate, and can facilitate the prediction of future regional dynamics.


Shuttle Radar Topographic Mission Accelerator Mass Spectrometry Pollen Accumulation Rate Palaeolimnological Study Increase Water Salinity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arrowsmith A (1811) Outline of the physical and political divisions of South America. In: David Rumsey Map collection. Cited 10 Mar 2005
  2. Behling H (1993) Untersuchungen zur Spätpleistozänen und Holozänen Vegetations-und Klimageschichte der tropischen Küstenwälder und der Araukarienwälder in Santa Catarina (Südbrasilien). Dissertationes Botanicae 206. Cramer, BerlinGoogle Scholar
  3. Behling H, Cohen MCL, Lara RJ (2004) Late Holocene mangrove dynamics of the Marajó Island, Amazônia, North Brazil. Veget Hist Archaeobot 13:73–80CrossRefGoogle Scholar
  4. Calkin PE, Wiles GC, Barclay DJ (2001) Holocene coastal glaciation of Alaska. Quat Sci Rev 20:449–461CrossRefGoogle Scholar
  5. Cohen MCL, Behling H, Lara RJ (2005a) Amazonian mangrove dynamics during the last millennium: the relative sea-level and the Little Ice Age. Rev Paleobot Palinol 136:93–108CrossRefGoogle Scholar
  6. Cohen MCL, Souza Filho PW, Lara RJ, Behling H, Angulo RJ (2005b) A model of Holocene mangrove development and relative sea-level changes on the Bragança Peninsula (North Brazil). Wetl Ecol Manag 13:433–443CrossRefGoogle Scholar
  7. Eisma D, Augustinus PGEF, Alexander CR (1991) Recent and subrecent changes in the dispersal of Amazon mud. Neth J Sea Res 28:181–192CrossRefGoogle Scholar
  8. Faegri K, Iversen J (1989) Textbook of pollen analysis. Wiley, ChichesterGoogle Scholar
  9. Grimm EC (1987) CONISS: a Fortran 77 program for stratigraphically constrained cluster analysis by the method of the incremental sum of squares. Comput Geosci 13:13–35CrossRefGoogle Scholar
  10. Gutiérrez D (1562) Americae. Library of Congress Washington, D.C. Cited 14 Mar 2002
  11. Hébert JR (2002) The 1562 Map of America by Diego Gutiérrez. Library of Congress Washington, D.C. Cited 14 Mar 2002
  12. Herrera LF, Urrego LE (1996) Atlas de polen de plantas útiles y cultivadas de la Amazonia colombiana (Pollen atlas of useful and cultivated plants in the Colombian Amazon region). Estudios en la Amazonia Colombiana, XI. Tropenbos-Colombia, BogotáGoogle Scholar
  13. Iriondo M, Kröhling D (1995) El Sistema Eólico Pampeano. Com Museo Prov Ciencias Nat 5:1–80Google Scholar
  14. Lara RJ, Szlafsztein CF, Cohen MCL, Berger U, Glaser M (2002) Consequences of mangrove dynamics for private land use in Bragança, North Brazil: a case study. J Coastal Conserv 8:97–102CrossRefGoogle Scholar
  15. Luckman BH (2000) The Little Ice Age in the Canadian Rockies. Geomorphology 32:357–384CrossRefGoogle Scholar
  16. Meggers BJ (1994) Archaeological evidence for the impact of mega-El Niño events on Amazonia during the past two millennia. Clim Change 28:321–338CrossRefGoogle Scholar
  17. Menezes M, Berger U, Worbes M (2003) Annual growth rings and long-term growth patterns of mangrove trees from the Bragança peninsula, North Brazil. Wetl Ecol Manag 11:233–242CrossRefGoogle Scholar
  18. Mörner NA (1996) Global change and interaction of earth rotation, ocean circulation and paleoclimate. An Acad Bras Cienc 68:77–94Google Scholar
  19. Mörner NA (1999) Sea level and climate: rapid regressions at local warm phases. Quatern Int 60:75–82CrossRefGoogle Scholar
  20. Pinzón Y (1755) Yañez Pinzons Reise. In: Arkstee und Merkus (eds) Allgemeine Historie der Reisen zu Wasser und Lande, vol 13. Leipzig, p 103Google Scholar
  21. Pujos M, Latouche C, Maillet N (1996) Late Quaternary paleoceanography of the French Guiana continental shelf: clay-mineral evidence. Oceanol Acta 19:477–487Google Scholar
  22. Roosevelt AC (1991) In: Moundbuilder of the Amazon: geophysical archaeology on Marajó Island, Brazil. Academic Press, San DiegoGoogle Scholar
  23. Rossetti DF, Valeriano MM (2007) Evolution of the lowest Amazon basin modeled from the integration of geological and SRTM topographic data. Catena 70:253–265CrossRefGoogle Scholar
  24. Rossetti DF, Valeriano MM, Thales M (2007) An abandoned estuary within Marajó Island: implications for late quaternary paleogeography of Northern Brazil. Est Coasts 30(5):813–826Google Scholar
  25. Rossetti DF, Góes AM, Valeriano MM, Miranda MCC (2008) Quaternary tectonics in a passive margin: Marajó Island, northern Brazil. J Quatern Sci 23(121):135Google Scholar
  26. Röthlisberger F, Hass P, Holzhauser H, Keller W, Bircher W, Renner F (1980) Holocene climatic fluctuations—radiocarbon dating of fossil soils (fAh) and woods from moraines and glaciers in the Alps. Geogr Helv 35:21–52Google Scholar
  27. Roubik DW, Moreno JE (1991) Pollen and spores of Barro Colorado Island, Missouri Botanical Garden vol 36. St. Louis, p 268Google Scholar
  28. Solomina O, Jomelli V, Kaser G, Ames A, Berger B, Pouyaud B (2007) Lichenometry in the Cordillera Blanca, Peru: “Little Ice Age” moraine chronology. Glob Planet Change 59:225–235CrossRefGoogle Scholar
  29. Stuiver M, Reimer PJ, Bard E, Beck JW, Burr GS, Hughen KA, Kromer B, McCormac G, Plicht J, Spurk M (1998) INTCAL98 radiocarbon age calibration, 24000–0 cal BP. Radiocarbon 40:1041–1083Google Scholar
  30. Teixeira J (1630) Taboas gerães de toda a navegação. Library of the Congress Washington, D.C. Cited 17 Feb 2005
  31. Valeriano MM, Rossetti DF, Martini PR, Barros O (2006) Aquecimento global pode reduzir Ilha de Marajó. INPE: Cod_Noticia=607, 11/04/2006
  32. Van der Hammen T (1986) Fluctuaciones holocénicas del nivel de inundaciones en la cuenca del Bajo Magdalena-Cauca, San Jorge (Colombia). Geol Norand 10:11–18Google Scholar
  33. Vital H, Stattegger K (2000) Lowermost Amazon River: evidence of late Quaternary sea-level fluctuations in a complex hydrodynamic system. Quatern Int 72:53–60CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Zentrum für marine TropenökologieBremenGermany
  2. 2.Laboratory of Coastal DynamicsFederal University of ParáBelémBrazil

Personalised recommendations