Abstract
Sea-level rise (SLR) due to climate change is a serious global threat: The scientific evidence is now overwhelming. Continued growth of greenhouse gas emissions and associated global warming could well promote SLR of 1 m in this century, and unexpectedly rapid breakup of the Greenland and West Antarctic ice sheets might produce a 3–5 m SLR. In this paper, we assess the consequences of continued SLR for 84 coastal developing countries. Geographic Information System (GIS) software has been used to overlay the best available, spatially disaggregated global data on critical impact elements (land, population, agriculture, urban extent, wetlands, and GDP), with the inundation zones projected for 1–5 m SLR. Our results reveal that tens of millions of people in the developing world are likely to be displaced by SLR within this century; and accompanying economic and ecological damage will be severe for many. At the country level results are extremely skewed, with severe impacts limited to a relatively small number of countries.
Similar content being viewed by others
References
Church J, Gregory J, Huybrechts P, Kuhn M, Lambeck K, Nhuan M, Qin D, Woodworth P (2001) Changes in sea level. In: Houghton J, Ding Y, Griggs D, Noguer M, van der Linden P, Xiaosu D (eds) Climate change 2001. The scientific basis. Cambridge University Press, Cambridge, pp 639–693
Davis CH, Li Y, McConnell JR, Frey MM, Hannah E (2005) Snowfall-driven growth in East Antarctica ice sheet mitigates recent sea-level rise. Science 308(5730):1898–1901
Hanna E, Huybrechts P, Janssens I, Cappelen J, Steffen K, Stephens A (2005) Runoff and mass balance of the Greenland ice sheet: 1958–2003. J Geophys Res 110:D13108
Hansen J (2006) Can we still avoid dangerous human-made climate change? Presentation on December 6, 2005 to the American Geophysical Union in San Francisco, California. Available at: http://www.columbia.edu/∼jeh1/newschool_text_and_slides.pdf
Hansen J, Nazarenko L, Ruedy R, Sato M, Willis J, Del Genio A, Koch D, Lacis A, Lo K, Menon S, Novakov T, Perlwitz J, Russell G, Schmidt G, Tausnev N (2005) Earth’s energy imbalance: confirmation and implications. Science 308:1431–1435
Howat I, Joughin I, Scambos T (2007) Rapid changes in ice discharge from Greenland outlet glaciers. Science 315:1559–1561
Krabill W, Hanna E, Huybrechts P, Abdalati W, Cappelen J, Csatho B, Frederick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas R, Yunge J (2004) Greenland ice sheet: increased coastal thinning. Geophys Res Lett 31:L24402
IPCC (2007) Climate change 2007: the physical science basis. Summary for policymakers
Lehner B, Döll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. J of Hydro 296(1–4):1–22
Meier M, Dyurgerov M, Rick U, O’Neel S, Pfeffer W, Anderson R, Anderson S, Glazovsky A (2007) Glaciers dominate eustatic sea-level rise in the 21st century. Science 317:1064–1067
Mendelsohn R, Dinar A, Williams L (2006) The distributional impact of climate change on rich and poor countries. Environ Dev Econ 11:159–178
Overpeck J, Otto-Bliesner B, Miller G, Muhs D, Alley R, Kiehl J (2006) Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science 311:1747–1750
Rahmsdorf S (2007) A semi-empirical approach to projecting future sea-level rise. Science 308:368–370
Rignot E, Kanagaratnam P (2006) Changes in the velocity structure of the Greenland Ice Sheet. Science 311:986–990
Sachs J, Mellinger A, Gallup J (2001) The geography of poverty and wealth. Sci Am 284(3):70–75
Stroeve J, Holland M, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: faster than forecast. Geophys Res Lett 34:L09501
Velicogna I, Wahr J (2006) Measurements of time-variable gravity show mass loss in Antarctica. Science 311:1754–1756
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dasgupta, S., Laplante, B., Meisner, C. et al. The impact of sea level rise on developing countries: a comparative analysis. Climatic Change 93, 379–388 (2009). https://doi.org/10.1007/s10584-008-9499-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10584-008-9499-5