Skip to main content

Advertisement

Log in

Implications of delayed actions in addressing carbon dioxide emission reduction in the context of geo-engineering

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Carbon dioxide emissions need to be reduced well below current emissions if atmospheric concentrations are to be stabilised at a level likely to avoid dangerous climate change. We investigate how delays in reducing CO2 emissions affect stabilisation scenarios leading to overshooting of a target concentration pathway. We show that if geo-engineering alone is used to compensate for the delay in reducing CO2 emissions, such an option needs to be sustained for centuries even though the period of overshooting emissions may only last for a few decades. If geo-engineering is used for a shorter period, it has to be associated with emission reductions significantly larger than those required to stabilise CO2 without overshooting the target. In the presence of a strong climate–carbon cycle feedback the required emission reductions are even more drastic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archer D, Kheshgi H, Maier-Reimer E (1997) Multiple timescales for neutralization of fossil-fuel CO2. Geophys Res Lett 24:405–408

    Article  Google Scholar 

  • Bengtsson L (2006) Geoengineering to confine climate change: is it at all feasible? Clim Change 77:229–234. doi:10.1007/s10584-006-9133-3

    Article  Google Scholar 

  • Boucher O, Jones A, Betts RA (2008) Climate response of the physiological impact of carbon dioxide on plants. Clim Dyn. doi:10.1007/s00382-008-459-6 (in press)

  • Budyko MI (1977) Climatic changes. American Geophysical Society, Washington DC, 244 pp

    Google Scholar 

  • Cicerone RJ (2006) Geoengineering: encouraging research and overseeing implementation. Clim Change 77:221–226. doi:10.1007/s10584-006-9102-x

    Article  Google Scholar 

  • Crutzen PJ (2006) Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Clim Change 77:211–220. doi:10.1007/s10584-006-9101-y

    Article  Google Scholar 

  • den Elzen M, Meinshausen M (2006) Multi-gas emission pathways for meeting the EU 2°C climate target. In: Schellnhuber HJ, Cramer W, Nakicenovic N, Wigley T, Yohe G (eds) Avoiding dangerous climate change, chapter 31. Cambridge University Press, Cambridge, pp 299–309

    Google Scholar 

  • Dickinson RE (1996) Climate engineering. A review of aerosol approaches to changing the global energy balance. Clim Change 33:279–290

    Article  Google Scholar 

  • Enting IG, Wigley TML, Heimann M (1994) Future emissions and concentrations of carbon dioxide: key ocean/atmosphere/land analyses. Division of Atmospheric Res., CSIRO, Australia

    Google Scholar 

  • Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Climate 19:3337–3353

    Article  Google Scholar 

  • Gedney N, Cox P, Betts RA, Boucher O, Huntingford C, Stott P (2006) Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439:835–838. doi:10.1038/nature04504

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R, Lacis A, Oinas V (2000) Global warming in the twenty-first century: an alternative scenario. Proc Natl Acad Sci 97(18):9875–9880

    Article  Google Scholar 

  • IPCC (2001) Climate change 2001, the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. In: Houghton JT et al (eds). Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2007) Climate change 2007, the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Solomon S et al (eds). Cambridge University Press, Cambridge

    Google Scholar 

  • Jones CD, Cox P, Huntingford C (2003) Uncertainty in climate–carbon-cycle projections associated with the sensitivity of soil respiration to temperature. Tellus 55B:642–648

    Google Scholar 

  • Jones CD, Cox PM, Huntingford C (2006a) Impact of climate–carbon cycle feedbacks on emission scenarios to achieve stabilisation. In: Schellnhuber HJ, Cramer W, Nakicenovic N, Wigley T, Yohe G (eds) Avoiding dangerous climate change, chapter 34. Cambridge University Press, Cambridge, pp 323–331

    Google Scholar 

  • Jones CD, Cox PM, Huntingford C (2006b) Climate–carbon cycle feedbacks under stabilization: uncertainty and observational constraints. Tellus 58B:603–613. doi:10.1111/j.1600-0889.2006.00217.x

    Google Scholar 

  • Joos F, Bruno M (1996) Pulse response functions are cost-efficient tools to model the link between carbon emissions, atmospheric CO2 and global warming. Phys Chem Earth 21:471–476

    Article  Google Scholar 

  • Lowe JA, Gregory JM, Ridley J, Huybrechts P, Nicholls RJ, Collins M (2006) The role of sea-level rise and the Greenland ice sheet in dangerous climate change: implications for the stabilisation of climate. In: Schellnhuber HJ, Cramer W, Nakicenovic N, Wigley T, Yohe G (eds) Avoiding dangerous climate change, chapter 4. Cambridge University Press, Cambridge, pp 29–36

    Google Scholar 

  • MacCracken MC (2006) Geoengineering: worthy of cautious evaluation? Clim Change 77:211–220. doi:10.1007/s10584-006-9130-6

    Article  Google Scholar 

  • Matthews HD, Caldeira K (2007) Transient climate–carbon simulations of planetary geoengineering. Proc Natl Acad Sci 104:9949–9954

    Article  Google Scholar 

  • Matthews HD, Caldeira K (2008) Stabilizing climate requires near-zero emissions. Geophys Res Lett 35:L04705. doi:10.1029/2007GL032388

    Article  Google Scholar 

  • Mignone BK, Socolow RH, Sarmiento JL, Oppenheimer M (2008) Atmospheric stabilization and the timing of carbon mitigation. Clim Change 88:251–265. doi:10.1007/s10584-007-9391-8

    Article  Google Scholar 

  • NASA (2007) Workshop report on managing solar radiation. In: Lane L, Caldeira K, Chattfield R, Langhoff S (eds) NASA/CP-2007-214558

  • Orr JC et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Science 437:681–686

    Google Scholar 

  • Prentice IC, Farquhar GD, Fasham MJR, Goulden ML, Heimann M, Jaramillo VJ, Kheshgi HS, Le Quéré C, Scholes RJ, Wallace DWR (2001) The carbon cycle and atmospheric carbon dioxide. In: Houghton JT et al (eds) Climate change 2001: the scientific basis, Intergovernmental Panel on Climate Change, chapter 3. Cambridge University Press, Cambridge

    Google Scholar 

  • Rasch PJ, Crutzen PJ, Coleman DB (2008) Exploring the geoengineering of climate using stratospheric sulfate aerosols: the role of particle size. Geophys Res Lett 35:L02809. doi:10.1029/2007GL032179

    Article  Google Scholar 

  • Sanderson MG, Collins WJ, Hemming DL, Betts RA (2007) Stomatal conductance changes due to increasing carbon dioxide levels: projected impact on surface ozone level. Tellus 59:404–411

    Article  Google Scholar 

  • Tilmes S, Müller R, Salawitch R (2008) The sensitivity of polar ozone depletion to proposed geoengineering schemes. Science 320:1201–1204. doi:10.1126/science.1153966

    Article  Google Scholar 

  • van Vuuren DP, den Elzen MGJ, Lucas PL, Eickhout B, Strengers BJ, van Ruijven B, Wonink S, van Houdt R (2007) Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim Change 81:119–159

    Article  Google Scholar 

  • Wigley TML (2006) A combined mitigation/geoengineering approach to climate stabilisation. Science 314:452–454. doi:10.1126/science.1131728

    Article  Google Scholar 

  • Wigley TML, Richels R, Edmonds JA (1996) Economic and environmental choices in the stabilisation of atmospheric CO2 concentrations. Nature 379:242–245

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Boucher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boucher, O., Lowe, J.A. & Jones, C.D. Implications of delayed actions in addressing carbon dioxide emission reduction in the context of geo-engineering. Climatic Change 92, 261–273 (2009). https://doi.org/10.1007/s10584-008-9489-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-008-9489-7

Keywords

Navigation