Skip to main content

Advertisement

Log in

Snow avalanche regime and climatic conditions in the Chic-Choc Range, eastern Canada

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Because snow avalanches occur at altitudes close to the 0°C isotherm in mountain environments, they should respond quickly to climatic variations. This study provides tree-ring-based high-magnitude avalanche chronologies for 12 subalpine avalanche paths in the Chic-Choc Range of Québec (eastern Canada). For the period covered by the chronologies, i.e., between 1895 and 1999, high-magnitude avalanches occurred with an average return interval of 5.3 years, which represents an average annual probability of 21% for all paths. A regional avalanche activity index (RAAI) was developed to help differentiating widespread regional avalanche activity from avalanche events resulting from local factors. Nineteen years of high-magnitude avalanche occurrence were identified (1898, 1936, 1939, 1941, 1965, 1969, 1970, 1971, 1977, 1981, 1984, 1987, 1988, 1989, 1990, 1991, 1992, 1994 and 1995). Of these, 15 occurred after 1950 and 10 after 1980. Propitious climatic conditions that account for widespread avalanche activity in the study region were identified as follows: (1) above-average total snowfall, (2) high-frequency of snowstorms, (3) major rain events and facet–crust development, (4) sequences of freezing rain and strong winds, and (5) early-season weak layers of faceted crystals and depth hoar. The number of days with air temperature above 0°C has strong implications on the internal structure and stratigraphy of the snowpack, and consequently on avalanche release. Land managers should thus consider more closely the impact of climatic conditions and warming on avalanche activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beaudin J (1977) Géologie de la région de mont Albert, Comté de Matane. Geol Surv Can DP-495

  • Birkeland KW (1998) Terminology and predominant processes associated with the formation of weak layers of near-surface faceted crystals in the mountain snowpack. Arct Antarct Alp Res 30:193–199

    Google Scholar 

  • Birkeland KW, Mock CJ (2001) The major snow avalanche cycle of February 1986 in the Western Unites States. Nat Hazards 24:75–95

    Article  Google Scholar 

  • Blikra LH, Selvik SF (1998) Climatic signals recorded in snow avalanche-dominated colluvium in western Norway: depositional facies successions and pollen records. Holocene 8:631–658

    Article  Google Scholar 

  • Boucher D, Filion L, Hétu B (2003) Reconstitution dendrochronologique et fréquence des grosses avalanches de neige dans un couloir subalpin du mont Hog’s Back, Gaspésie centrale (Québec). Géogr Phys Quat 57:159–168

    Google Scholar 

  • Breiman L, Friedman R, Olshen R, Stone C (1984) Classification and regression trees. Wadsworth, California

    Google Scholar 

  • Bull WB, Schlyter P, Brogaard S (1995) Lichenometric analysis in the Kärkerieppe slush-avalanche fan, Kärkevagge, Sweden. Geogr Ann 77A:231–240

    Article  Google Scholar 

  • Butler DM (1979) Snow avalanche path terrain and vegetation, Glacier National Park, Montana. Arct Alp Res 11:17–32

    Article  Google Scholar 

  • Butler DM (1985) A history of high-magnitude snow avalanche, Southern Glacier National Park, Montana, USA. Mt Res Dev 5:175–182

    Article  Google Scholar 

  • Carrara PE (1979) The determination of snow avalanche frequency through tree-ring analysis and historical records at Ophir, Colorado. Geological Survey of America Bulletin, Part I 90:773–780

    Article  Google Scholar 

  • Clark WAV, Hosking PL (1986) Statistical methods for geographers. Wiley, New York

    Google Scholar 

  • Colbeck SC, Jamieson BC (2001) The formation of faceted layers above crusts. Cold Reg Sci Technol 33:247–252

    Article  Google Scholar 

  • Conway H, Raymond CF (1993) Snow stability during rain. J Glaciol 39:635–642

    Google Scholar 

  • Davis RE, Elder K, Howlett D, Bouzaglou E (1999) Relating storm and weather factors to dry slab avalanche activity at Alta, Utah, and Mammoth Mountains, California, using classification and regression trees. Cold Reg Sci Technol 30:79–89

    Article  Google Scholar 

  • De Quervain M, Meister R (1987) 50 years of snow profiles on the Weissfluhjoch and relations to the surrounding avalanche activity (1936/37–1985/86). In: Salm B, Gubler H (eds) Avalanche formation, movement and effects. IAHS Publication no. 162, pp 161–181

  • De Römer HS (1977) Régions des monts McGerrigle. Ministère des Richesses Naturelles, Gouvernement du Québec No. 174

  • Dubé S, Filion L, Hétu B (2004) Tree-ring reconstruction of high-magnitude snow avalanches in the northern Gaspé Peninsula, Québec. Arct Antarct Alp Res 36:555–564

    Article  Google Scholar 

  • Embleton C, King CAM (1974) Periglacial geomorphology. Arnold, London

    Google Scholar 

  • Fitzharris BB (1981) Frequency and climatology of major avalanches at Rogers Pass, 1909 to 1977. National Research Council of Canada No. 956

  • Fitzharris BB (1987) A climatology of major avalanche winters in western Canada. Atmos. Ocean 25:115–136

    Google Scholar 

  • Föhn PM (1992) Climatic change, snow-cover, and avalanches. Catena Suppl 22:11–21

    Google Scholar 

  • Gagnon RM (1970) Climat des Chic-Chocs. Ministère des Richesses Naturelles, Service de la Météorologie, Gouvernement du Québec No. 36

  • Gagnon S (2003) Avalanche incident comes as a choc in Québec. Avalanche News 66:52–53

    Google Scholar 

  • Germain D (2005) Dynamique des avalanches de neige en Gaspésie, Québec, Canada. PhD thesis, Université Laval

  • Germain D, Filion L, Hétu B (2005) Snow avalanche activity after fire and logging disturbances, northern Gaspé Peninsula, Québec, Canada. Can J Earth Sci 42:2103–2116

    Article  Google Scholar 

  • Grove JM (1972) The incidence of landslides, avalanches, and flood in western Norway during the Little Ice Age. Arct Alp Res 4:131–138

    Article  Google Scholar 

  • Hächler P (1987) Analysis of the weather situations leading to severe and extraordinary avalanche situations. Avalanche formation movement and effects. IAHS Publication no. 162, pp 295–303

  • Haeberli W, Beniston M (1998) Climate change and its impacts on glaciers and permafrost in the Alps. Ambio 27:258–265

    Google Scholar 

  • Hägeli P, McClung DM (2003) Avalanche characteristics of a transitional snow climate—Columbia Mountains, British Columbia, Canada. Cold Reg Sci Technol 37:255–276

    Article  Google Scholar 

  • Hebertson EG, Jenkins MJ (2003) Historic climate factors associated with major avalanche years on the Wasatch Plateau, Utah. Cold Reg Sci Technol 37:315–332

    Article  Google Scholar 

  • Hétu B (1992) Coarse cliff-top aeolian sedimentation in northern Gaspésie, Québec (Canada). Earth Surf Process Landf 17:95–108

    Article  Google Scholar 

  • Hétu B, Gray JT (1980) Évolution postglaciaire des versants de la région de Mont-Louis, Gaspésie, Québec. Géog Phys Quat 39:47–66

    Google Scholar 

  • Hétu B, Bergeron A (2004) Les avalanches au Québec: analyse des conditions météorologiques et des facteurs de terrain propices au déclenchement des avalanches. Rapport présenté dans le cadre du Projet conjoint de sécurité-avalanche au Québec, Canadian Avalanche Association

  • Johnson EA (1987) The relative importance of snow avalanche disturbance and thinning on canopy plant populations. Ecology 68:43–53

    Article  Google Scholar 

  • Johnson EA, Hogg L, Carlson C (1985) Snow avalanche frequency and velocity for the Kananaskis valley in the Canadian Rockies. Cold Reg Sci Technol 10:141–151

    Article  Google Scholar 

  • Jomelli V, Pech P (2004) Effects of the little ice age on avalanche boulder tongues in the French Alps (Massif des Écrins). Earth Surf Process Landf 29:553–564

    Article  Google Scholar 

  • Keylock CJ (2003) The North Atlantic oscillation and snow avalanching in Iceland. Geophys Res Lett 30:1254. doi:10.1029/2002Gl016272

    Article  Google Scholar 

  • Larocque S, Hétu B, Filion L (2001) Geomorphic and dendroecological impacts of slushflow in central Gaspé Peninsula (Québec, Canada). Geogr Ann 83A:191–201

    Article  Google Scholar 

  • Laternser M, Schneebeli M (2002) Temporal trend and spatial distribution of avalanche activity during the last 50 years in Switzerland. Nat Hazards 27:201–230

    Article  Google Scholar 

  • Luckman BH (1977) The geomorphic activity of snow avalanche. Geogr Ann 59A:31–48

    Article  Google Scholar 

  • Luckman BH, Fraser GW (2001) Dendrogeomorphic investigations of snow avalanche tracks in the Canadian Rockies. Paper presented at the international conference on the future of dendrochronology, Davos, Switzerland, 22–26 September 2001

  • McCarroll D (1993) Modelling late Holocene snow avalanche activity: incorporating a new approach to lichenometry. Earth Surf Process Landf 18:527–539

    Article  Google Scholar 

  • McCarroll D, Matthews JA, Shakesby RA (1995) Late Holocene snow-avalanche activity in southern Norway: interpreting lichen size-frequency distributions using an alternative to simulation modelling. Earth Surf Process Landf 20:465–471

    Article  Google Scholar 

  • Mears AI (1975) Dynamics of dense-snow avalanches interpreted from broken trees. Geology 3:521–523

    Article  Google Scholar 

  • Mears AI (1992) Snow avalanche hazard analysis for land-use planning and engineering, Colorado. Geological Survey Bulletin No. 49

  • Payette S, Boudreau F (1984) Évolution postglaciaire des hauts sommets alpins et subalpins de la Gaspésie. Can J Earth Sci 21:319–355

    Google Scholar 

  • Rapp A (1995) Case studies of geoprocesses and environmental change in mountains of northern Sweden. Geogr Ann 77:189–198

    Article  Google Scholar 

  • Rayback SA (1998) A dendrogeomorphological analysis of snow avalanches in the Colorado Front Range, U.S.A. Phys Geogr 19:502–515

    Google Scholar 

  • Richard PJH, Labelle C (1989) Histoire postglaciaire de la végétation au lac du Diable, mont Albert, Gaspésie, Québec. Géogr Phys Quat 43:337–357

    Google Scholar 

  • Schneebeli M, Laternser M, Ammann W (1997) Destructive snow avalanches and climate change in the Swiss Alps. Eclogae Geol Helv 90:457–461

    Google Scholar 

  • Shroder JF Jr (1978) Dendrogeomorphological analysis of mass movement on Table Cliffs Plateau, Utah. Quat Res 9:168–185

    Article  Google Scholar 

  • Strunk H (1991) Frequency distribution of debris flows in the alps since the little ice age. Zeitschrift für Geomorphologie Suppl 83:71–81

    Google Scholar 

  • Thompson LG, Mosley-Thompson E, Davis ME, Lin P-N, Henderson K, Mashiotta TA (2003) Tropical glacier and ice core evidence of climate change on annual to millennial time scales. Clim Change 59:137–155

    Article  Google Scholar 

  • Tremblay RLT, Cockburn GH, Lalonde JP (1975) Géochimie des sédiments de ruisseaux, région du mont Albert. Ministère des Richesses Naturelles du Québec, Division de géochimie

  • Veillette J, Cloutier M (1993) Géologie des formations en surface, Gaspésie, Québec. Geol Surv Can, map 1804A 1/250 000

  • Widmann M, Schör C (1997) A principal component and long-term trend analysis of daily precipitation in Switzerland. Int J Climatol 17:1333–1356

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Germain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Germain, D., Filion, L. & Hétu, B. Snow avalanche regime and climatic conditions in the Chic-Choc Range, eastern Canada. Climatic Change 92, 141–167 (2009). https://doi.org/10.1007/s10584-008-9439-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-008-9439-4

Keywords

Navigation