Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Climatic Change
  3. Article
The millennial atmospheric lifetime of anthropogenic CO2
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

An updated review about carbon dioxide and climate change

27 March 2018

Rex J. Fleming

Containing the risk of catastrophic climate change

15 June 2020

Aart Reinier Gustaaf Heesterman

Quantification of ocean heat uptake from changes in atmospheric O2 and CO2 composition

27 December 2019

L. Resplandy, R. F. Keeling, … A. Oschlies

Changes in atmospheric CO2 concentration over the past two millennia: contribution of climate variability, land-use and Southern Ocean dynamics

07 January 2022

Hugues Goosse, Pierre-Yves Barriat, … Anne Mouchet

Multiple Ecosystem Effects of Extreme Weather Events in the Arctic

18 May 2020

T. R. Christensen, M. Lund, … M. Mastepanov

A synthesis of mercury research in the Southern Hemisphere, part 1: Natural processes

21 March 2023

Larissa Schneider, Jenny A. Fisher, … Robert Mason

A high concentration CO2 pool over the Indo-Pacific Warm Pool

15 March 2023

R. Peter, J. Kuttippurath, … N. Sunanda

Carbon fluxes in the China Seas: An overview and perspective

09 October 2018

Qian Liu, Xianghui Guo, … Minhan Dai

Frontier science and challenges on offshore carbon storage

26 January 2023

Haochu Ku, Yihe Miao, … Lijun Yu

Download PDF
  • Open Access
  • Published: 04 June 2008

The millennial atmospheric lifetime of anthropogenic CO2

  • David Archer1 &
  • Victor Brovkin2 nAff3 

Climatic Change volume 90, pages 283–297 (2008)Cite this article

  • 5087 Accesses

  • 183 Citations

  • 58 Altmetric

  • Metrics details

Abstract

The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere/ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20–60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial/interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  • Alley RB, Clark PU, Huybrechts P, Joughin I (2005) Ice-sheet and sea-level changes. Science, 310:456–471

    Article  Google Scholar 

  • Archer DE (1991) Modeling the calcite lysocline. J Geophys Res 96(C9):17,037–17,050

    Article  Google Scholar 

  • Archer D (2005) Fate of fossil-fuel CO2 in geologic time. J Geophysical Res Oceans 10:C09S05 DOI 10.1029/2004JC002625

    Article  Google Scholar 

  • Archer DE (2007) Methane hydrate stability and anthropogenic climate change. Biogeosciences 4:993–1057

    Google Scholar 

  • Archer DE, Buffett B (2005) Time-dependent response of the global ocean clathrate reservoir to climatic and anthropogenic forcing. Geochem Geophys Geosys 6(3):Q03002 DOI 10.1029/2004GC000854

    Article  Google Scholar 

  • Archer D, Ganapolski A (2005) A movable trigger: Fossil fuel CO2 and the onset of the next glaciation. Geochem Geophys Geosys 6:Q05003 DOI 10.1029/2004GC000891

    Article  Google Scholar 

  • Archer D, Kheshgi H, Maier-Reimer E (1998) Dynamics of fossil fuel CO2 neutralization by marine CaCO3. Glob Biogeochem Cycles 12:259–276

    Article  Google Scholar 

  • Bamber JL, Alley RB, Joughin I (2007) Rapid response of modern day ice sheets to external forcing. Earth Planet Sci Lett 257:1–13

    Article  Google Scholar 

  • Berner RA, Kothavala Z (2001) GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Am J Sci 301(2):182–204

    Article  Google Scholar 

  • Berner BA, Lasaga AC, Garrels RM (1983) The carbonate–silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am J Sci 283:641–683

    Google Scholar 

  • Brewer PG, Paull C, Peltzer ET, Ussler W, Rehder G, Friederich G (2002) Measurements of the fate of gas hydrates during transit through the ocean water column. Geophys Res Lett 29(22):2081

    Article  Google Scholar 

  • Broecker WS, Takahashi T (1978) Neutralization of fossil fuel CO2 by marine calcium carbonate. In: Andersen NR, Malahoff A (eds) The fate of fossil fuel CO2 in the oceans. Plenum, New York, pp 213–248

    Google Scholar 

  • Brovkin V, Bendtsen J, Claussen M, Ganopolski A, Kubatzki C, Petoukhov V (2002) Carbon cycle, vegetation and climate dynamics in the Holocene: experiments with the CLIMBER-2 model. Glob Biogeochem Cycles 16(4):86–1 DOI 10.1029/2001GB001662

    Article  Google Scholar 

  • Brovkin V, Ganopolski A, Archer D, Rahmstorf S (2007) Lowering of glacial atmospheric CO2 in response to changes in oceanic circulation and marine biogeochemistry. Paleoceanography 22, PA4202, DOI 10.1029/2006PA001380

  • Caldeira K (1995) Long-term control of atmospheric carbon-dioxide—low-temperature sea-floor alteration or terrestrial silicate-rock weathering. Am J Sci 295(9):1077–1114

    Google Scholar 

  • Caldeira K, Rau GH (2000) Accelerating carbonate dissolution to sequester carbon dioxide in the ocean: geochemical implications. Geophys Res Lett 27(2):225–228

    Article  Google Scholar 

  • Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res—Oceans 110(C9):C09S04.1–C09S04.12

    Google Scholar 

  • Canadell JG, Quere CL, Raupach MR, Field CB, Buitehuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci USA 104(24):10288–10293

    Article  Google Scholar 

  • Clark PU, McCabe AM, Mix AC, Weaver AJ (2004) Rapid rise of sea level 19,000 years ago and its global implications. Science 304(5674):1141–1144

    Article  Google Scholar 

  • Crutzen PJ (2006) Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Clim Change 77(3–4):211–219

    Article  Google Scholar 

  • Deffeyes KS (2001) Hubbert’s Peak: the impending World Oil Shortage. Princeton University Press, Princeton, NJ, p 208

    Google Scholar 

  • Dekant W (1996) Toxicology of chlorofluorocarbon replacements. Environ Health Perspect 104:75–83

    Article  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, Dias PLdS, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the Physical Science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Ekstrom G, Nettles M, Tsai VC (2006) Seasonality and increasing frequency of Greenland glacial earthquakes. Science 311:1756–1758

    Article  Google Scholar 

  • Ganopolski A, Rahmstorf S, Petoukhov V, Claussen M (1998) Simulation of modern and glacial climates with a coupled global model of intermediate complexity. Nature 371:323–326

    Google Scholar 

  • Goodwin P, Williams RG, Follows MJ, Dutkeiwicz S (2007) The ocean–atmosphere partitioning of anthropogenic carbon dioxide on centennial timescales. Glob Biogeochem Cycles 21:GB1014 DOI 10.1029/2006GB002810

    Article  Google Scholar 

  • Hansen J, Nazarenko L, Ruedy R, Sato M, Willis J, Del Genio A, Koch D, Lacis A, Lo K, Menon S, Novakov T, Perlwitz J, Russell G, Schmidt GA, Tausnev N (2005) Earth’s energy imbalance: confirmation and implications. Science 308(5727):1431–1435

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci USA 103(39):14288–14293

    Article  Google Scholar 

  • Hansen JE (2006) Avoiding climate change. Science 311(5760):469–470

    Article  Google Scholar 

  • Harvey LDD, Huang Z (1995) Evaluation of the potential impact of methane clathrate destabilization on future global warming. J Geophys Res 100:2905–2926

    Article  Google Scholar 

  • Jansen E, Overpeck J, Briffa KR, Duplessy J-C, Joos F, Masson-Delmotte V, Olago D, Otto-Bliesner B, Peltier WR, Rahmstorf S, Ramesh R, Raynaud D, Rind D, Solomina O, Villaalba R, Zhang D (2007) Paleoclimate. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: the Physical Science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Keeling CD (1961) The concentration and isotopic abundances of carbon dioxide in rural and marine air. Geochim Cosmochim Acta 24(3–4):277–298

    Article  Google Scholar 

  • Kirhner G, Noack C (1988) Core history and nuclide inventory of Chernobyl core at the time of accident. Nucl Saf 29(1):1–5

    Google Scholar 

  • Kvenvolden KA (1988) Methane hydrate—a major reservoir of carbon in the shallow geosphere. Chem Geol 71(1–3):41–51

    Article  Google Scholar 

  • Lenton TM, Britton C (2006) Enhanced carbonate and silicate weathering accelerates recovery from fossil fuel CO2 perturbations. Glob Biogeochem Cycles 20:GB3009 DOI 10.1029/2005GB002678

    Article  Google Scholar 

  • Liblik LK, Moore TR, Bubier JL, Robinson SD (1997) Methane emissions from wetlands in the zone of discontinuous permafrost: Fort Simpson, Northwest Territories, Canada. Glob Biogeochem Cycles 11(4):485–494

    Article  Google Scholar 

  • Martin P, Archer D, Lea D (2005) Role of deep sea temperatures in the carbon cycle during the last glacial. Paleoceanography 20:2015 DOI 10.1029/2003PA000914

    Article  Google Scholar 

  • McGranahan G, Balk D, Anderson B (2007) The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ Urban 19(1):17–37

    Article  Google Scholar 

  • Milkov AV (2004) Global estimates of hydrate-bound gas in marine sediments: how much is really out there? Earth-Sci Rev 66(3–4):183–197

    Article  Google Scholar 

  • Montenegro A, Brovkin V, Eby M, Archer D, Weaver AJ (2007) Long term fate of anthropogenic carbon. Geophys Res Lett 34:L19707 DOI 10.1029/2007GL030905

    Article  Google Scholar 

  • Oppenheimer M (1998) Global warming and the stability of the West Antarctic Ice Sheet. Nature 393(6683):325–332

    Article  Google Scholar 

  • Revelle R, Suess HE (1957) Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus 9:18–27

    Article  Google Scholar 

  • Ridgwell A, Hargreaves JC (2007) Regulation of atmospheric CO2 by deep-sea sediments in an Earth system model. Glob Biogeochem Cycles 21:GB2008 DOI 10.1029/2006GB002764

    Article  Google Scholar 

  • Rivkina E, Laurinavichius K, McGrath J, Tiedje J, Shcherbakova V, Gilichinsky D (2004) Microbial life in permafrost. Adv Space Res 33:1215–1221

    Article  Google Scholar 

  • Rivkina EM, Friedmann EI, McKay CP, Gilichinsky DA (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66(8):3230–3233

    Article  Google Scholar 

  • Rogner H-H (1997) An assessment of world hydrocarbon resources. Annu Rev Energy Environ 22:217–262

    Article  Google Scholar 

  • Scheffer M, Brovkin V, Cox P (2006) Positive feedback between global warming and atmospheric CO2 concentration inferred from past climate change. Geophys Res Lett 33:L10702 DOI 10.1029/2005GL025044

    Article  Google Scholar 

  • Schellnhuber HJ, Cramer W, Nakicenovic N, Wigley T, Yohe G (2006) Avoiding dangerous climate change. Cambridge University Press, New York

    Google Scholar 

  • Soden BJ, Wetherald RT, Stenchikov GL, Robock A (2002) Global cooling after the eruption of Mount Pinatubo: a test of climate feedback by water vapor. Science 296:727–730

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Alley RB, Berntsen T, Bindoff NL, Chen Z, Chidthaisong A, Gregory JM, Hegerl GC, Heimann M, Hewitson B, Hoskins BJ, Joos F, Jouzel J, Kattsov V, Lohmann U, Matsuno T, Molina M, Nicholls N, Overpeck J, Raga G, Ramaswamy V, Ren J, Rusticucci M, Somerville R, Stocker TF, Whetton P, Wood RA, Wratt D (2007) Technical summary. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: the Physical Science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Stockstad E (2004) Defrosting the carbon freezer of the North. Science 304:1618–1620

    Article  Google Scholar 

  • Sundquist ET (1990) Influence of deep-sea benthic processes on atmospheric CO2. Phil Trans R Soc Lond A 331:155–165

    Article  Google Scholar 

  • Sundquist ET (1991) Steady-state and non-steady-state carbonate silicate controls on atmospheric CO2. Quat Sci Rev 10(2–3):283–296

    Article  Google Scholar 

  • Tans PP, Bakwin PS (1995) Climate-change and carbon-dioxide forever. Ambio 24(6):376–378

    Google Scholar 

  • Torn MS, Harte J (2006) Missing feedbacks, asymmetric uncertainties, and the underestimation of future warming. Geophys Res Lett 33:L10703 DOI 10.1029/2005GL025540

    Article  Google Scholar 

  • Tsai WT (2005) An overview of environmental hazards and exposure risk of hydrofluorocarbons (HFCs). Chemosphere 61(11):1539–1547

    Article  Google Scholar 

  • Tyrrell T, Shepherd JG, Castle S (2007) The long-term legacy of fossil fuels. Tellus 59:664–672

    Article  Google Scholar 

  • Walker JCG, Kasting JF (1992) Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide. Palaeogeogr, Palaeoclimatol, Palaeoecol (Global and Planetary Change Section) 97:151–189

    Article  Google Scholar 

  • Walker JCG, Hays PB, Kasting JF (1981) A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J Geophys Res 86:9776–9782

    Article  Google Scholar 

  • Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443:71–75 DOI 10.1038/nature0504

    Article  Google Scholar 

  • Zwally HJ, Abdalati W, Herring T, Larson K, Saba J, Steffen K (2002) Surface melt-induced acceleration of Greenland ice-sheet flow. Science 297(5579):218–222

    Article  Google Scholar 

Download references

Author information

Author notes
  1. Victor Brovkin

    Present address: Max Planck Institute for Meteorology, Bundesstr. 55, 20146, Hamburg, Germany

Authors and Affiliations

  1. Department of the Geophysical Sciences, University of Chicago, 5712 S Ellis, Chicago, IL, USA

    David Archer

  2. Potsdam Institute for Climate Impact Research, P. O. Box 601203, Potsdam, Germany

    Victor Brovkin

Authors
  1. David Archer
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Victor Brovkin
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to David Archer.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Archer, D., Brovkin, V. The millennial atmospheric lifetime of anthropogenic CO2 . Climatic Change 90, 283–297 (2008). https://doi.org/10.1007/s10584-008-9413-1

Download citation

  • Received: 19 December 2006

  • Published: 04 June 2008

  • Issue Date: October 2008

  • DOI: https://doi.org/10.1007/s10584-008-9413-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Fossil Fuel
  • Carbon Cycle
  • Glob Biogeochem Cycle
  • Methane Hydrate
  • Equilibrium Climate Sensitivity
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.