Skip to main content
Log in

On geoengineering with sulphate aerosols in the tropical upper troposphere and lower stratosphere

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

This paper is in response to the Editorial Essay by Crutzen and the Editorial Comment by Cicerone in the August 2006 issue of Climatic Change. We reprise the evidence from atmospheric nuclear weapon testing in the 1950s and 1960s which is salient to the mooted maintenance of an artificial sulphate aerosol layer in the lower stratosphere, including a hitherto and now posthumous unpublished analysis of the 185W Hardtack data. We also review recent investigations by ourselves, which have considerable bearing on some relevant questions concerning meteorological dynamics, aerosol chemistry and physics and the photodissociation of stratospheric sulphuric acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Andrews AE, Boering KA, Wofsy SC, Daube BC, Jones DB, Alex S, Loewenstein M, Podolske JR, Strahan SE (2001) Empirical age spectra for the midlatitude lower stratosphere from in situ observations of CO2: quantitative evidence for a subtropical barrier. J Geophys Res 106:10257–10274

    Article  Google Scholar 

  • Brewer AW (1960) The transfer of atmospheric ozone into the troposphere, MIT Planetary Circulation Project, paper presented at the United Nations Committee on the Effects of Radiation (UNSCEAR), Mass. Inst. of Technol., New York, January 1960

  • Briggs J, Roach WT (1963) Aircraft observations near jet streams. Q J R Meteorol Soc 89:225–247

    Article  Google Scholar 

  • Brock CA, Hamill P, Wilson JC, Jonsson H, Chan KR (1995) Particle formation in the upper tropical troposphere: a source of nuclei for the stratospheric aerosol. Science 270:1650–1653

    Article  Google Scholar 

  • Brock CA, Schroder F, Karcher B, Petzold A, Busen R, Fiebig M (2000) Ultrafine particle size distributions measured in aircraft exhaust plumes. J Geophys Res 105:26555–26567

    Article  Google Scholar 

  • CIAP (1975) Climatic Impact Assessment Program, Monograph 1, ‘The Natural Stratosphere of 1974’, Chapter 6, DOT-TST-75-51, Department of Transportation, Washington, D. C. 20590

  • Cicerone RJ (2006) Geoengineering: encouraging research and overseeing implementation. Clim Change 77:221–226

    Article  Google Scholar 

  • Crutzen PJ (1971) Ozone production rates in an oxygen–hydrogen–nitrogen oxide atmosphere. J Geophys Res 76:7311–7327

    Article  Google Scholar 

  • Crutzen PJ (2006) Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Clim Change 77:211–219

    Article  Google Scholar 

  • Danielsen EF (1964) Report on Project Springfield, DASA 1517, Defense Atomic Support Agency, Washington, D. C., 103 pp

  • Danielsen EF (1968) Stratospheric–tropospheric exchange based upon radioactivity, ozone and potential vorticity. J Atmos Sci 25:502–518

    Article  Google Scholar 

  • Danielsen EF (1985a) Ozone transport, Chapter 3. In: Whitten RC, Prasad SS (eds) Ozone in the free atmosphere. Van Nostrand Reinhold, New York

    Google Scholar 

  • Danielsen EF (1985b) The importance of open systems and dispersive mixing to stratospheric–tropospheric exchange, private communication to A. F. Tuck, from whom copies are available on request

  • Danielsen EF (1993) In situ evidence of rapid, vertical, irreversible transport of lower tropospheric air into the lower tropical stratosphere by convective cloud turrets and by larger scale upwelling in tropical cyclones. J Geophys Res 98:8665–8682

    Article  Google Scholar 

  • Danielsen EF, Hipskind RS, Starr WL, Vedder JF, Gaines SE, Kley D, Kelly KK (1991) Irreversible transport in the stratosphere by internal waves of short vertical wavelength. J Geophys Res 96:17433–17452

    Article  Google Scholar 

  • Dessler AE, Hintsa EJ, Weinstock EM, Anderson JG, Chan KR (1995) Mechanisms controlling water vapor in the lower stratosphere: “A tale of two stratospheres”. J Geophys Res 100:23167–23172

    Article  Google Scholar 

  • Dobson GMB (1973) The laminated structure of ozone in the atmosphere. Q J R Meteorol Soc 99:599–607

    Article  Google Scholar 

  • Donaldson DJ, Vaida V (2006) The influence of organic films at the air-aqueous boundary on atmospheric processes. Chem Rev 106:1445–1461

    Article  Google Scholar 

  • Donaldson DJ, Tuck AF, Vaida V (2001) Spontaneous fission of atmospheric aerosol particles. Phys Chem Chem Phys 3:5270–5273

    Article  Google Scholar 

  • Donaldson DJ, Tuck AF, Vaida V (2003) Atmospheric photochemistry via vibrational overtone absorption. Chem Rev 103:4717–4729

    Article  Google Scholar 

  • Ellison GB, Tuck AF, Vaida V (1999) Atmospheric processing of organic aerosols. J Geophys Res 104:11633–11641

    Article  Google Scholar 

  • Feely HW, Spar J (1960) Tungsten-185 from nuclear bomb tests as a tracer for stratospheric meteorology. Nature 188:1062–1064

    Article  Google Scholar 

  • Feely HW, Seitz H, Lagomarsino RJ, Biscaye PE (1966) Transport and fallout of radioactive debris. Tellus 18:316–328

    Google Scholar 

  • Foot JS (1984) Aircraft measurements of the humidity in the lower stratosphere from 1977 to 1980 between 45° N and 65° N. Q J R Meteorol Soc 110:303–319

    Google Scholar 

  • Friedlander SK (1977) Smoke, dust and haze. John Wiley and Sons, NY, USA, p 135

    Google Scholar 

  • Gill PS, Graedel TE, Weschler CJ (1983) Organic films on atmospheric aerosol particles, fog droplets, cloud droplets, raindrops, and snowflakes. Rev Geophys 21:903–920

    Article  Google Scholar 

  • Gilman JB, Tervahattu H, Vaida V (2006) Interfacial properties of mixed films of long-chain organics at the air–water interface. Atmos Environ 40:6606–6614

    Article  Google Scholar 

  • Harvey VL, Hitchman MH, Pierce RB, Fairlie TDA (1999) Tropical aerosol in the Aleutian High. J Geophys Res 104:6281–6290

    Article  Google Scholar 

  • Hering WS (1966) Ozone and atmospheric transport processes. Tellus 18:329–336

    Google Scholar 

  • Hitchman MH, Huesmann AS (2007) A seasonal climatology of Rossby wave breaking in the 320–2000 K layer. J Atmos Sci 64:1992–1940

    Article  Google Scholar 

  • Hitchman MH, McKay M, Trepte CR (1994) A climatology of stratospheric aerosol. J Geophys Res 99:20684–20700

    Article  Google Scholar 

  • Johnston HS (1971) Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust. Science 173:517–522

    Article  Google Scholar 

  • Karol IL (1972) Radioisotopes and Global Transport in the Atmosphere, Gidrometeoizdat, Leningrad; Israel Program for Scientific Translation, Keter House Publishing, Jerusalem, 1974

  • Konopka P, Günther G, Müller R, dos Santos FHS, Schiller C, Ravegnani F, Ulanovsky A, Schlager H, Volk CM, Viciani S, Pan L, McKenna DS, Riese M (2006) Contribution of mixing to the upward transport across the TTL. Atmos Chem Phys Discuss 6:12217–12266

    Google Scholar 

  • Langford AO, O’Leary TJ, Proffitt MH, Hitchman MH (1996) Transport of the Pinatubo volcanic aerosol to a northern midlatitude site. J Geophys Res 100:9007–9016

    Article  Google Scholar 

  • List RJ, Salter LP, Telegadas K (1966) Radioactive debris as a tracer for investigating stratospheric motions. Tellus 18:345–354

    Google Scholar 

  • Lovejoy S, Schertzer D, Stanway JD (2001) Direct evidence of multifractal cascades from planetary scales down to 1 km. Phys Rev Lett 86:5200–5203

    Article  Google Scholar 

  • Mauldin LE, Zaun NH, McCormick MP, Guy JH, Vaughn WR (1985) Stratospheric Aerosol and Gas Experiment-II instrument – a functional description. Opt Eng 24:307–312

    Google Scholar 

  • Miller Y, Gerber RB (2006) Dynamics of vibrational overtone excitations of H2SO4, H2SO4.H2O: hydrogen-hopping and photodissociation processes. J Am Chem Soc 128:9594–9595

    Article  Google Scholar 

  • Miller Y, Gerber RB, Vaida V (2007) Photodissociation yields for vibrationally excited states of sulfuric acid under atmospheric conditions. Geophys Res Lett 34:L16820, DOI 10.1029/2007GL030529

    Article  Google Scholar 

  • Mills MJ, Toon OB, Vaida V, Hintze PE, Kjaergaard HG, Schofield DP, Robinson TW (2005) Photolysis of sulfuric acid vapor by visible light as a source of the polar stratospheric CN layer. J Geophys Res 110:D08201, DOI 10.1029/2004JD005519

    Article  Google Scholar 

  • Molina MJ, Rowland FS (1974) Stratospheric sink for chlorofluoromethanes: chlorine atom catalyzed destruction of ozone. Nature 249:810–814

    Article  Google Scholar 

  • Murgatroyd RJ (1957) Winds and temperatures between 20 km and 100 km – a review. Q J R Meteorol Soc 83:417–458

    Article  Google Scholar 

  • Murgatroyd RJ (1965) Ozone and water vapour in the upper troposphere and lower stratosphere, ‘Meteorological Aspects of Atmospheric Radioactivity’, W. M. O. Technical Note No. 68, 68–94, World Meteorological Organization, Geneva

  • Murgatroyd RJ, Clews CJB (1949) Wind at 100,000 feet over S. E. England. Geophys Mem Meteorol Office 83, H. M. S. O., London

  • Murgatroyd RJ, Singleton F (1961) Possible meridional circulations in the stratosphere and mesosphere. Q J R Meteorol Soc 87:125–135

    Article  Google Scholar 

  • Murphy DM, Thomson DS, Mahoney MJ (1998) In situ measurements of organics, meteoritic material, mercury and other elements in aerosols at 5 to 19 kilometers. Science 282:1664–1669

    Article  Google Scholar 

  • Newell RE (1963) The general circulation of the atmosphere and its effects on the movements of trace substances. J Geophys Res 68:3949–3962

    Google Scholar 

  • Newman PA, Harris NRP, Adriani A, Amanatidis GT, Anderson JG, Braathen GO, Brune WH, Carslaw KS, Craig MS, DeCola PL, Guirlet M, Hipskind RS, Kurylo MJ, Küllmann H, Larsen N, Mégie GJ, Pommereau J-P, Poole LR, Schoeberl MR, Stroh F, Toon OB, Trepte CR, Van Roozendael M (2002) An overview of the SOLVE/THESEO 2000 campaign. J Geophys Res 107(D20):8259, DOI 10.1029/2001JD001303

    Article  Google Scholar 

  • O’Connor FM, Vaughan G, De Backer H (1999) Observations of subtropical air in the European midlatitude, lower stratosphere. Q J R Meteorol Soc 125:2965–2986

    Article  Google Scholar 

  • Postel GA, Hitchman MH (1999) A climatology of Rossby wave breaking along the subtropical tropopause. J Atmos Sci 56:359–373

    Article  Google Scholar 

  • Reed RJ, Danielsen EF (1957) Fronts in the vicinity of the tropopause. Arch Meteorol Geophys Bioklimatol 11:1–17

    Article  Google Scholar 

  • Reed RJ, German KE (1965) A contribution to the problem of stratospheric diffusion by large-scale mixing. Mon Weather Rev 93:313–321

    Article  Google Scholar 

  • Richard EC, Tuck AF, Aikin KC, Kelly KK, Herman RL, Troy RF, Hovde SJ, Rosenlof KH, Thompson TL, Ray EA (2006) High-resolution airborne profiles of CH4, O3 and water vapor near tropical Central America in late January to early February 2004. J Geophys Res 111:D13304, DOI 10.1029/2005JD006513

    Article  Google Scholar 

  • Ridley B, Atlas E, Selkirk H, Pfister L, Montzka D, Walega J, Donnelly S, Stroud V, Richard E, Kelly K, Tuck A, Thompson T, Reeves J, Baumgardner D, Rawlins WT, Mahoney M, Herman R, Friedl R, Moore F, Ray E, Elkins J (2004) Convective transport of reactive constituents to the tropical and mid-latitude tropopause region: I. Observations. Atmos Environ 38:1259–1274

    Article  Google Scholar 

  • Russell PB, Pfister L, Selkirk HB (1993) The tropical experiment of the Stratosphere–Troposphere Exchange Project (STEP): science objectives, operations and summary findings. J Geophys Res 98:8563–8589

    Article  Google Scholar 

  • Sawyer JS (1951) The dynamical systems of the lower stratosphere. Q J R Meteorol Soc 77:480–483

    Article  Google Scholar 

  • Schertzer D, Lovejoy S (1985) The dimension and intermittency of atmospheric dynamics. Turbul Shear Flows 4:7–33, Springer, New York

    Google Scholar 

  • Shapiro MA (1980) Turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and troposphere. J Atmos Sci 37:994–1004

    Article  Google Scholar 

  • SPARC (2006) Assessment of Stratospheric Aerosol Properties. In: L. Thomason and Th. Peter (eds) World Climate Research Program-124, WMO/TD-No. 1295, SPARC Report No. 4, 322 pp

  • Tervahattu H, Hartonen K, Kerminen VM, Kupiainen K, Aarnio P, Koskentalo F, Tuck AF, Vaida V (2002a) New evidence of an organic layer on marine aerosols. J Geophys Res 107(D7):4053, DOI 10.1029/2000JD00282

    Article  Google Scholar 

  • Tervahattu H, Juhanoja J, Kupiainen K (2002b) Identification of an organic coating on marine aerosol particles by TOF-SIMS. J Geophys Res 107(D16):4319, DOI 10.1029/2001JD001403

    Article  Google Scholar 

  • Tervahattu H, Juhanoja J, Vaida V, Tuck AF, Niemi JV, Kupiainen K, Kulmala M, Vehkamaki H (2005) Fatty acids on continental sulfate aerosol particles. J Geophys Res 110:D06207, DOI 10.1029/2004JD005400

    Article  Google Scholar 

  • Trepte CR, Hitchman MH (1992) Tropical stratospheric circulation deduced from satellite aerosol data. Nature 355:626–628

    Article  Google Scholar 

  • Tuck AF (2008) ATMOSPHERIC TURBULENCE: A molecular dynamics perspective. Oxford University Press, Oxford

    Google Scholar 

  • Tuck AF, Baumgardner D, Chan KR, Dye JE, Elkins JW, Hovde SJ, Kelly KK, Loewenstein M, Margitan JJ, May RD, Podolske JR, Proffitt MH, Rosenlof KH, Smith WL, Webster CR, Wilson JC (1997) The Brewer–Dobson circulation in the light of high-altitude in situ aircraft observations. Q J R Meteorol Soc 123:1–69

    Google Scholar 

  • Tuck AF, Hovde SJ, Kelly KK, Mahoney MJ, Proffitt MH, Richard EC, Thompson TL (2003) Exchange between the upper tropical troposphere and the lower stratosphere studied with aircraft observations. J Geophys Res 108(D23):4734, DOI 10.1029/2003JD003399

    Article  Google Scholar 

  • Tuck AF, Hovde SJ, Kelly KK, Reid SJ, Richard EC, Atlas EL, Donnelly SG, Stroud VR, Cziczo DJ, Murphy DM, Thomson DS, Elkins JW, Moore FL, Ray EA, Mahoney MJ, Friedl RR (2004) Horizontal variability 1–2 km below the tropical tropopause. J Geophys Res 109:D05310, DOI 10.1029/2003JD003942

    Article  Google Scholar 

  • Vaida V, Kjaergaard HG, Hintze PE, Donaldson DJ (2003) Photolysis of sulfuric acid vapor by visible solar radiation. Science 299:1566–1568

    Article  Google Scholar 

  • Vaughan G, Timmis C (1998) Transport of near-tropopause air into the lower midlatitude stratosphere. Q J R Meteorol Soc 124:1559–1578

    Article  Google Scholar 

  • Weisenstein D, Bekki S (2006) Ch 6. Modeling. In: Thomason L, Peter TH (eds) SPARC assessment of stratospheric aerosol properties. World Climate Research Program-124, Toronto, pp 219–271

    Google Scholar 

  • Wilson JC, Jonsson HH, Brock CA, Toohey DW, Avallone LM, Baumgardner D, Dye JE, Poole LR, Woods DC, DeCoursey RJ, Osborn M, Pitts MC, Kelly KK, Chan KR, Ferry GV, Loewenstein M, Podolske JR, Weaver A (1993) In situ observations of aerosol and chlorine monoxide after the 1991 eruption of Mount Pinatubo: effect of reactions on sulfate aerosol. Science 261:1140–1143

    Article  Google Scholar 

  • Wilson JC, Lee S-H, Reeves JM, Brock CA, Jonsson HH, Lafleur BG, Loewenstein M, Podolske J, Atlas E, Boering K, Toon G, Fahey D, Bui TP, Diskin G, Moore F (2008) Steady state aerosol distributions in the extra-tropical lower stratosphere and the processes that maintain them. Atmos Chem Phys Discuss 8:3665–3692

    Article  Google Scholar 

  • World Meteorological Organization (1986) Stratosphere-Troposphere Exchange, Chapter 5, Atmospheric Ozone 1985, Global Ozone Research and Monitoring Project, Report No. 16, Geneva

  • Wyslouzil BE, Wilemski G, Strey R, Heath CH, Dieregsweiler U (2006) Experimental evidence for internal structure in aqueous-organic nanodroplets. Phys Chem Chem Phys 8:54–57

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Tuck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuck, A.F., Donaldson, D.J., Hitchman, M.H. et al. On geoengineering with sulphate aerosols in the tropical upper troposphere and lower stratosphere. Climatic Change 90, 315–331 (2008). https://doi.org/10.1007/s10584-008-9411-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-008-9411-3

Keywords