Skip to main content

Advertisement

Log in

Potential impact of climate change on ecosystems of the Barents Sea Region

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

The EU project BALANCE (Global Change Vulnerabilities in the Barents region: Linking Arctic Natural Resources, Climate Change and Economies) aims to assess vulnerability to climate change in the Barents Sea Region. As a prerequisite the potential impact of climate change on selected ecosystems of the study area has to be quantified, which is the subject of the present paper. A set of ecosystem models was run to generate baseline and future scenarios for 1990, 2020, 2050 and 2080. The models are based on data from the Regional Climate Model (REMO), driven by a GCM which in turn is forced by the IPCC-B2 scenario. The climate change is documented by means of the Köppen climate classification. Since the multitude of models requires the effect of climate change on individual terrestrial and marine systems to be integrated, the paper concentrates on a standardised visualisation of potential impacts by use of a Geographical Information System for the timeslices 2050 and 2080. The resulting maps show that both terrestrial and marine ecosystems of the Barents region will undergo significant changes until both 2050 and 2080.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ACIA (2005) Arctic climate impact assessment. Cambridge University Press, p 1042

  • Arft AM, Walker MD, Gurevitch J, Altalo JM, Bret-Harte MS, Dale M, Diemer M, Gugerli F, Henry GHR, Jones MH, Hollister RD, Jónsdóttir IS, Laine K, Lévesque E, Marion GM, Molau U, Molgaard P, Nordenhäll U, Razhivin V, Robinson CH, Starr G, Stenström A, Stenström M, Totland ØM, Turner PL, Walker LJ, Webber PJ, Welker JM, Wookey PA (1999) Responses of tundra plants to experimental warming: meta-analysis of the International Tundra Experiment. Ecol Mongr 69:491–511

    Google Scholar 

  • Bernard L, Ostländer N (2008) Assessment of climate change vulnerability in the Arctic using geoinformation services in spatial data infrastructure. DOI 10.1007/s10584-007-9346-0

  • Bogstad B, Haug T, Mehl S (2000) Who eats whom in the Barents Sea? NAMMCO Sci Publ 2:98–119

    Google Scholar 

  • Cox PM, Betts RA, Bunton CB, Essery RLH, Rowntree PR, Smith J (1999) The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim Dyn 15:183–203

    Article  Google Scholar 

  • Dankers R, Middelkoop H (2008) River discharge and freshwater runoff to the Barents Sea under present and future climate conditions. DOI 10.1007/s10584-007-9349-x

  • Edvardsen A, Tande KS, Slagstad D (2003) The importance of advection on production of Calanus finmarchicus in the Atlantic part of the Barents Sea. Sarsia 88(4):261–273

    Article  Google Scholar 

  • Eide A (2008) An integrated study of economic effects of and vulnerabilities to global warming on the Barents Sea cod fisheries. Climatic Change DOI 10.1007/s10584-007-9338-0

  • Ellingsen IH, Dalpadado P, Slagstad D, Loeng H (2008) Impact of climatic change on the biological production in the Barents Sea. DOI 10.1007/s10584-007-9369-6

  • FAO (1991) The digitised soil map of the world. FAO, Rome

    Google Scholar 

  • Fiksen Ø, Giske J, Slagstad D (1995) A spatially explicit fitness-based model of capelin migrations in the Barents Sea. Fisheries Oceanogr 4:193–208

    Article  Google Scholar 

  • Fraedrich K, Gerstengarbe F-W, Werner PC (2001) Climate shifts during the last century. Clim Change 50:40–417

    Article  Google Scholar 

  • Gjøsæter H (1998) The population biology and exploitation of capelin (Mallotus villosus) in the Barents Sea. Sarsia 83:453–496

    Google Scholar 

  • Gjøsæter H, Loeng H (1987) Growth of the Barents Sea capelin (Mallotus villosus) in relation to climate. Environ Biol Fishes 20:293–300

    Google Scholar 

  • Göttel H, Alexander J, Rechid D, Wolf A, Jacob D (2008). Influence of changed vegetation fields on regional climate simulations in the Barents Sea Region. DOI 10.1007/s10584-007-9341-5

  • Hansen J, Sato M, Glascol J, Ruedy R (1998) Is climate changing noticeably? Proc Natl Acad Sci USA 95(8):4113–4120

    Article  Google Scholar 

  • Hartley AE, Neill C, Melillo JM, Crabtree R, Bowles FP (1999) Plant performance and soil nitrogen mineralisation in response to simulated climate change in subarctic dwarf shrub heath. Oikos 86:331–343

    Article  Google Scholar 

  • Hassel A, Skjoldal HR, Gjøsæter H, Loeng H, Omli L (1991) Impact of grazing from capelin (Mallotus villosus) on zooplankton: a case study from the northern Barents Sea. Polar Res 10:371–388

    Article  Google Scholar 

  • Huntley B (1997) The responses of vegetation to past and future climate changes. In: Oechel WC, Callaghan T, Gilmanov T, Holten JI, Maxwell B, Molau U, Sveinbjörnsson B (eds) Global change and Artic terrestrial ecosystems. Springer, New York, pp 290–311

    Google Scholar 

  • Huse G (2001) Modelling habitat choice in fish using adapted random walk. Sarsia 86:477–483

    Google Scholar 

  • Huse G, Ellingsen I (2008). Capelin Migrations and climate change – a modelling analysis. DOI 10.1007/s10584-007-9347-z

  • Huse G, Johansen GO, Gjøsæter H, Bogstad B (2004) Studying spatial and trophic interactions between capelin and cod using individual-based modeling. ICES J Mar Sci 61:1201–1213

    Article  Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis. Contribution to working group 1 to the third assessment report of the IPCC. Cambrige Univeristy Press, Cambridge

    Google Scholar 

  • Jacob D (2001) A note to the simulations of annual and inter-annual variability of water budget over the Baltic sea drainage basin. Meteorol Atmos Phys 77(1–4):61–73

    Article  Google Scholar 

  • Jacob D, Podzun R (1997) Sensitivity studies with the regional climate mocel REMO. Meteorol Atmos Phys 63:119–129

    Article  Google Scholar 

  • Kattenberg A, Giorgi F, Grassl H, Meehl GA, Mitchell JFB, Stouffer RJ, Tokioka T, Weaver AJ, Wigley TML (1996) Climate models – projections of future climate. In: Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds) Climate change 1995. The science of climate change, University Press, Cambridge, pp 285–358

    Google Scholar 

  • Keup-Thiel E, Goettel H, Jacob D (2006) Regional climate simulations for the Barents Sea region. Boreal Environ Res 11:329–339

    Google Scholar 

  • Keskitalo C (2008). Vulnerability and adaptive capacity in forestry in Northern Europe: the case of Sweden. DOI 10.1007/s10584-007-9337-1

  • Köppen W (1923) Die Klimate der Erde. Grundriss der Klimakunde. De Gruyter, Berlin, p 369

    Google Scholar 

  • Lange M (2008). Assessing climate change impacts in the European North. DOI 10.1007/s10584-007-9336-2

  • Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S (2002) Soil warming and carbon-cycle feedbacks to the climate system. Science 298:2173–2176

    Article  Google Scholar 

  • Metzger M (2005) European vulnerability to global change, a spatial explicit and quantitative Assessment. PhD thesis, Wageningen University, Wageningen, The Netherlands

  • Metzger M, Schröter D (2006) Towards a spatially explicit and quantitative vulnerability assessment of environmental change in Europe. Regional Environmental Change 6:201–216

    Article  Google Scholar 

  • Nakicenovic N, Swart R (eds) (2000) Emissions scenario: special report of the intergovernmental panel on climate change. Cambridge University Press, p 599

  • Olson JS (1994) Global ecosystem framework-definitions. USGS EROS Data Center Internal Report, Sioux Falls, SD, p 37

  • Pittock AB, Jones RN, Mitchell CD (2001) Probabilities will help us plan for climate change. Nature 413:249

    Article  Google Scholar 

  • Rees G, Vitebsky P, Danks FS, Stammler F (2008) Vulnerability of European reindeer husbandry to global change. DOI 10.1007/s10584-007-9345-1

  • Roeckner E, Bengtsson L, Feichter J, Lelieveld J, Rohde H (1999) Transient climate change simulations with a coupled atmosphere-ocean GCM including the tropospheric sulfur cycle. J Climate 12:3004–3032

    Article  Google Scholar 

  • Schneider S (2001) What is “Dangerous” climate change? Nature 411:17–19

    Article  Google Scholar 

  • Serreze MC, Walsh JE, Chapin FS III, Osterkamp T, Dyurgerov M, Romanovsky V, Oechel WC, Morison J, Zhang T, Barry RG (2000) Observational evidence of recent change in the northern high latitude environment. Clim Change 46:159–207

    Article  Google Scholar 

  • Slagstad D, McClimans TA (2005) Modelling the ecosystem dynamics of the Barents Sea including the marginal ice zone: I. Physical and chemical oceanography. J Mar Syst 58:1–18

    Article  Google Scholar 

  • Slagstad D, Downing K, Carlotti F, Hirche HJ (1999) Modelling the carbon export and air-sea flux of CO2 in the Greenland Sea. Deep-Sea Res Part 2 Top Stud Oceanogr 46:1511–1530

    Article  Google Scholar 

  • Smith B, Prentice IC, Sykes MT (2001) Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European Climate Space. Glob Ecol Biogeogr 10:621–637

    Article  Google Scholar 

  • Smith J, Stone R, Fahrenkamp-Uppenbrink J (2002) Introduction to special issue: trouble in Polar Paradise. Science 297(5586):1489

    Article  Google Scholar 

  • Wassmann P, Slagstad D, Riser CW, Reigstad M (2006) Modelling the ecosystem dynamics of the Barents Sea including the marginal ice zone: II. Carbon flux and interannual variability. J Mar Syst 59(1–2):1–24

    Article  Google Scholar 

  • Wolf A, Callaghan TV, Larson K (2008). Future changes in vegetation and ecosystem function of the Barents Region. DOI 10.1007/s10584-007-9342-4

  • Zöckler C, Miles L, Fish L, Wolf A, Rees G, Danks F (2008) Potential impact of climate change and reindeer density on tundra indicator species in the Barents Sea region. DOI 10.1007/s10584-007-9344-2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hedwig Roderfeld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roderfeld, H., Blyth, E., Dankers, R. et al. Potential impact of climate change on ecosystems of the Barents Sea Region. Climatic Change 87, 283–303 (2008). https://doi.org/10.1007/s10584-007-9350-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-007-9350-4

Keywords

Navigation