Skip to main content

Advertisement

Log in

Potential impact of climate change and reindeer density on tundra indicator species in the Barents Sea region

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Climate change is expected to alter the distribution of habitats and thus the distribution of species connected with these habitats in the terrestrial Barents Sea region. It was hypothesised that wild species connected with the tundra and open-land biome may be particularly at risk as forest area expands. Fourteen species of birds were identified as useful indicators for the biodiversity dependent upon this biome. By bringing together species distribution information with the LPJ-GUESS vegetation model, and with estimates of future wild and domestic reindeer density, potential impacts on these species between the present time and 2080 were assessed. Over this period there was a net loss of open land within the current breeding range of most bird species. Grazing reindeer were modelled as increasing the amount of open land retained for nine of the tundra bird species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akçakaya RH, Butchart SHM, Mace GM, Stuart SN, Hilton-Taylor G (2006) Use and misuse of the IUCN Red List Criteria in projecting climate change impacts on biodiversity. Glob Chang Biol 12:2037–2043

    Article  Google Scholar 

  • Araújo MB, Rahbek C (2006) How does climate change affect biodiversity? Science 313:1396–1397

    Article  Google Scholar 

  • Beerling DJ (1999) Long-term responses of boreal vegetation to global change: an experimental and modelling investigation. Glob Chang Biol 5:55–74

    Article  Google Scholar 

  • Bezemer TM, Jones TH (1998) Plant–insect herbivore interactions in elevated atmospheric CO2: quantitative analyses and guild effects. Oikos 82:212–222

    Article  Google Scholar 

  • BirdLife International (2004) Threatened birds of the world 2004, CD-ROM. BirdLife International, Cambridge, UK

    Google Scholar 

  • Blew J, Günther K, Laursen K, van Roomen M, Südbeck P, Eskilden K, Potel P, Rösner H-U (2005) Overview of numbers and trends of migratory waterbirds in the Wadden Sea 1980–2000. In: Blew J, Südbeck P (eds) Migratory waterbirds in the Wadden Sea 1980–2000, Wadden Sea Ecosystem no 20, Common Wadden Sea Secretariat, Trilateral Monitoring and Assessment Group, Joint Monitoring Group of Migratory Birds in the Wadden Sea, Wilhelmshaven, Germany.

  • Bowers MA, Harris LC (1994) A large-scale metapopulation model of interspecific competition and environmental change. Ecol Model 72:251–273

    Article  Google Scholar 

  • Byrkjedal I, Thompson D (1998) Tundra plovers. Poyser, London, p 422

    Google Scholar 

  • Christensen TR, Johansson T, Åkerman JH, Mastepanov M, Malmer N, Friborg T, Crill P, Svensson BH (2004) Thawing sub-arctic permafrost: effects on vegetation and methane emissions. Geophys Res Lett 31:L04501

    Article  Google Scholar 

  • Coviella CE, Trumble JT (1999) Effects of elevated atmospheric carbon dioxide on insect–plant interactions. Conserv Biol 13:700–712

    Article  Google Scholar 

  • Cramp Simmons SKEL (1977) Handbook of the birds of the Western Palaearctic, vol. I.. Oxford University Press, Oxford, p p 722

    Google Scholar 

  • Cramp S, Simmons KEL (1983) Handbook of the Birds of the Western Palaearctic, vol. III.. Oxford University Press, Oxford, p p 911

    Google Scholar 

  • Davis AJ, Jenkinson LS, Lawton JH, Shorrocks B, Wood SN (1998) Making mistakes when predicting shifts in species range in response to global warming. Nature 391(6669):783–786

    Article  Google Scholar 

  • Edwards JL (2004) Research and societal benefits of the global biodiversity information facility. BioScience 54(6):485–486

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson TA, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Göttel H, Alexander J, Keup-Thiel E, Rechid D, Hagemann S, Blome T, Wolf A, Jacob D (2008), Influence of changed vegetations fields on regional climate simulations in the Barents Sea Region DOI 10.1007/s10584-007-9341-5

  • Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modelling methods. Ecography 29(5):773–785

    Article  Google Scholar 

  • IUCN (2001) IUCN Red list categories and criteria version 3.1 http://www.iucn.org/themes/ssc/redlists/RLcats2001booklet.html. Accessed 12 April 2006

  • Klanderud K, Totland Ø (2005) Simulated climate change altered dominance hierarchies and diversity of an alpine biodiversity hotspot. Ecology 86:2047–2054

    Article  Google Scholar 

  • Kozlov MV (2008) Losses of birch foliage due to insect herbivory along geographical gradients in Europe: a climate-driven pattern? Climatic Change DOI 10.1007/s10584-007-9348-y

  • Nelson FE, Anisimov OE, Shiklomanov NI (2001) Subsidence risk from thawing permafrost. Nature 410:889

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3–4):231–259

    Article  Google Scholar 

  • Rees WG, Stammler FM, Danks FS, Vitebsky P (2008). Vulnerability of European reindeer husbandry to global change DOI 10.1007/s10584-007-9345-1

  • Schekkerman H, Tulp I, Ens B (2003) Conservation of long-distance migratory wader populations: reproductive consequences of events occurring in distant staging sites. Wader Study Group Bull 100:151–156

    Google Scholar 

  • Smith SD, Huxman TE, Zitzer SF, Charlet TN, Housman DC, Coleman JS, Fenstermaker LK, Seemann JR, Nowak RS (2000) Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408:79–82

    Article  Google Scholar 

  • Soloviev MY, Golovnyuk VV, Gatilov AA, Rakhimberdiev EN (2005) Breeding conditions and numbers of birds on Taimyr, 2004. Report, p. 47

  • Soloviev MY, Tomkovich PS (2006) Bird breeding conditions in the Arctic in 2005. Arctic Birds 8:27–32

    Google Scholar 

  • Storeheier PV, van Oort BEH, Sundset MA, Mathiesen SD (2003) Food intake of reindeer in winter. J Agric Sci 140:1–9

    Article  Google Scholar 

  • Stroud DA, Davidson NC, West R, Scott DA, Haanstra L, Thorup O, Ganter B, Delany S (2004) Status of migratory wader populations in Africa and Western Eurasia in the 1990s. International Wader Studies 15:1–259

    Google Scholar 

  • Syroechkovski EE Jr (2000) On the distribution of greater white-fronted goose in the Taiga of North eastern Yakutia. Casarca 6:108–114

    Google Scholar 

  • Thuiller W, Araújo MB, Lavorel S (2004) Do we need land-cover data to model species distributions in Europe? J Biogeogr 31:353–361

    Google Scholar 

  • Tolvanen P, Øien IJ, Ruokolainen K (eds) (2000) Fennoscandian lesser white-fronted goose conservation project. Annual report 1999’ WWF Finland Report 12 and Norwegian Ornithological Society, NOF Rapportserie Report no. 1-2000

  • Tomkovich PS, Yu Fokin C (1983) On the ecology of the Temminck’s stint in Northeast Siberia. Ornithologia 18:40–56

    Google Scholar 

  • Tømmervik H, Johansen B, Tombre I, Thannheiser D, Høgda KA, Garre E, Wielgolaski FE (2004) Vegetation changes in the Nordic mountain birch forest: the influence of grazing and climate change. Arct Antarct Alp Res 36(3):323–332

    Article  Google Scholar 

  • Wolf A, Callaghan TV, Larson K, Callaghan TY, Larson K (2008) Future changes in vegetation and ecosystem function of the Barents Region. Climatic Change DOI 10.1007/s10584-007-9342-4

  • Zöckler C (1998) Patterns in biodiversity in Arctic birds. WCMC Biodivers Bull 3:1–15 WCMC

    Google Scholar 

  • Zöckler C (2002) A comparison between Tundra and wet grassland breeding Waders with Special Reference to the Ruff (Philomachus pugnax). Schriftenreihe Landschaftspflege und Naturschutz 74:115

    Google Scholar 

  • Zöckler C, Lysenko I (2000) Water birds on the edge. First circumpolar assessment of climate change impact on arctic breeding water birds’, WCMC Biodiversity Series 11, WCMC, Cambridge, UK, 20pp plus Annex

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Zöckler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zöckler, C., Miles, L., Fish, L. et al. Potential impact of climate change and reindeer density on tundra indicator species in the Barents Sea region. Climatic Change 87, 119–130 (2008). https://doi.org/10.1007/s10584-007-9344-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-007-9344-2

Keywords

Navigation