Climatic Change

, Volume 83, Issue 1–2, pp 241–285 | Cite as

Tropical Pacific – mid-latitude teleconnections in medieval times

  • Nicholas E. Graham
  • Malcolm K. Hughes
  • Caspar M. Ammann
  • Kim M. Cobb
  • Martin P. Hoerling
  • Douglas J. Kennett
  • James P. Kennett
  • Bert Rein
  • Lowell Stott
  • Peter E. Wigand
  • Taiyi Xu
Article

Abstract

Terrestrial and marine late Holocene proxy records from the western and central US suggest that climate between approximately 500 and 1350 a.d. was marked by generally arid conditions with episodes of severe centennial-scale drought, elevated incidence of wild fire, cool sea surface temperatures (SSTs) along the California coast, and dune mobilization in the western plains. This Medieval Climate Anomaly (MCA) was followed by wetter conditions and warming coastal SSTs during the transition into the “Little Ice Age” (LIA). Proxy records from the tropical Pacific Ocean show contemporaneous changes indicating cool central and eastern tropical Pacific SSTs during the MCA, with warmer than modern temperatures in the western equatorial Pacific. This pattern of mid-latitude and tropical climate conditions is consistent with the hypothesis that the dry MCA in the western US resulted (at least in part) from tropically forced changes in winter NH circulation patterns like those associated with modern La Niña episodes. We examine this hypothesis, and present other analyses showing that the imprint of MCA climate change appears in proxy records from widely distributed regions around the planet, and in many cases is consistent with a cool medieval tropical Pacific. One example, explored with numerical model results, is the suggestion of increased westerlies and warmer winter temperatures over northern Europe during medieval times. An analog technique for the combined use of proxy records and model results, Proxy Surrogate Reconstruction (PSR), is introduced.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

References

  1. Alexandre P (1987) Le climat en Europe au moyen âge. Ecole des Hautes Etudes en Sciences Sociales, ParísGoogle Scholar
  2. Alexander MA, Scott JD, Deser C (2000) Processes that influence sea surface temperature and ocean mixed layer depth variability in a coupled model. J Geophys Res Oceans 105:16823–16842Google Scholar
  3. Ammann CM, Meehl GA, Washington WM, Zender CS (2003) A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate. Geophys Res Lett 30(12):1657–1659Google Scholar
  4. Ammann CM, Joos F, Schimel DS, Otto-Bliesner BL, Tomas RA (2007) Solar influence on climate during the past millennium: results from transient simulations with the NCAR Climate Sysem Model. Proc Natl Acad Sci (in press)Google Scholar
  5. Anderson RS, Smith SJ (1997) The sedimentary record of fire in Montane Meadows, Sierra Nevada, California, USA. In: Clarke J, Cachier H, Goldammer JG, Stocks B (eds) Sediment records of biomass burning and global change, NATO ASI Series. Springer, Berlin Heidelberg New York, pp 313–328Google Scholar
  6. Arbogast AF (1996) Stratigraphic evidence for late-Holocene eolian sand mobilization and soil formation in South-Central Kansas, USA. J Arid Environ 34:403–414Google Scholar
  7. Arnold JE (1992) Complex Hunter-Gatherer-Fishers of prehistoric California: chiefs, specialists, and maritime adaptations of the Channel Islands. Am Antiq 57:60–84Google Scholar
  8. Arnold JE (1997) Bigger boats, crowded creekbanks: environmental stresses in perspective. Am Antiq 62:337–339Google Scholar
  9. Benson L, Kashgarian M, Dye R, Lund S, Paillet F, Smooth J, Kester C, Mensing S, Meko D, Lindström S (2002) Holocene multidecadal and multicentennial droughts affecting Northern California and Nevada. Quat Sci Rev 21:659–682Google Scholar
  10. Binford MW, Kolata AL, Brenner M, Janusek JW, Seddon MT, Abbot M, Curtis J (1997) Climatic variation and the rise and fall of an Andean civilization. Quat Res 47:235–248Google Scholar
  11. Bjerknes J (1966) A possible response of the atmospheric Hadley circulation to anomalies of ocean temperature. Tellus 18:820–829Google Scholar
  12. Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172Google Scholar
  13. Boville BA, Gent PR (1998) The NCAR climate system model, version one. J Climate 11:1115–1130Google Scholar
  14. Boxt MA, Raab LM, Davis OK, Pope KO (1999) Extreme late Holocene climate change in coastal California. Pac Coast Archaeol Soc Q 35:25–37Google Scholar
  15. Bradley RS (2000) 1000 years of climate changes. Science 288:1353–1354Google Scholar
  16. Bradley RS, Hughes MK, Diaz HF (2003a) Climate in medieval time. Science 302:404–405Google Scholar
  17. Bradley RS, Vuille M, Hardy D, Thompson LG (2003b) Low latitude ice cores record Pacific sea surface temperatures. Geophys Res Lett 30(4):1174 doi:10.1029/2002GLO16546 Google Scholar
  18. Bridgeman HA (1983) Could climate change have had an influence on Polynesian migrations? Palaeogeogr Palaeoclimatol Palaeoecol 41:193–206Google Scholar
  19. Brönnimann S, Luterbacher J, Staehelin J, Svendby T, Hansen G, Svenøe T (2004) Extreme climate of the global troposphere and stratosphere in 1940–42 related to El Niño. Nature 431:971–974Google Scholar
  20. Brönnimann S, Xoplaki E, Casty C, Pauling A, Luterbacher J (2006) ENSO influence on Europe during the last centuries. Clim Dyn (doi:10.1007/s00382-006-0175-z)
  21. Byrne R, Ingram BL, Starratt S, Malamud-Roam F, Collins JN, Conrad ME (2001) Carbon isotope, diatom, and pollen evidence for late Holocene salinity change in a brackish marsh in the San Francisco estuary. Quat Res 55:66–76Google Scholar
  22. Casty C, Wanner H, Luterbacher J, Esper J, Boehm R (2005) Temperature and precipitation variability in the European Alps since 1500. Int J Climatol 25:1855–1880Google Scholar
  23. Cayan DR, Dettinger MD, Diaz HF, Graham NE (1998) Decadal climate variability of precipitation over Western North America. J Climate 11:3148–3166Google Scholar
  24. Clement AC, Seager R, Cane MA, Zebiak SE (1996) An ocean dynamical thermostat. J Climate 9:2190–2196Google Scholar
  25. Clement AC, Seager R, Cane MA (2000a) Orbital controls on tropical climate. Paleoceanography 14:441–446Google Scholar
  26. Clement AC, Seager R, Cane MA (2000b) Suppression of El Niño during the mid-Holocene by changes in the Earth’s orbit. Paleoceanography 15:731–737Google Scholar
  27. Cobb KM, Charles CD, Cheng H, Edwards RL (2003) El Niño/Southern Oscillation and tropical Pacific climate during the last millennium. Nature 424:271–276Google Scholar
  28. Cole KL, Wahl ER (2000) A late Holocene paleoecological record from Torrey Pines State Reserve, California. Quat Res 53:341–351Google Scholar
  29. Cook ER, Woodhouse C, Eakin CM, Meko DM, Stahle DW (2004) Long-term aridity changes in the Western United States. Science 306:1015–1018Google Scholar
  30. Czaja A, Frankignoul K (2002) Observed impact of Atlantic sea surface temperature anomalies on the North Atlantic Oscillation. J Clim 215:606–623Google Scholar
  31. Daniels ML, Anderson RS, Whitlock C (2005) Vegetation and fire history since the late Pleistocene for the Trinity Mountains, Northwestern California, USA. Holocene 15:1062–1071Google Scholar
  32. Davis O (1992) Rapid climate change in coastal Southern California inferred from pollen analysis of San Joaquin Marsh. Quat Res 37:89–100Google Scholar
  33. Davis O (1994) The correlation of summer precipitation in the Southwestern U.S.A. with isotopic records of solar activity during the medieval warm period. Earth and Environmental Science 26:271–287Google Scholar
  34. Dean W (1997) Rates, timing, and cyclicity of Holocene eolian activity in North-Central United States: evidence from varved lake sediments. Geology 25:331–334Google Scholar
  35. deMenocal P, Ortiz JD, Guilderson T, Sarnthein M (2000) Millennial-scale linkages between high- and low-latitude climate during the Holocene warm period. Science 288:2198–2202Google Scholar
  36. Dettinger MD, Cayan DR, Diaz HF, Meko DM (1998) North–South precipitation patterns in Western North America on interannual-to-decadal timescales. J Clim 11:3095–3111Google Scholar
  37. Dillehay TD, Kolata AL (2004) Long-term human response to uncertain environmental conditions in the Andes. Proc Natl Acad Sci 101:4325–4330Google Scholar
  38. Eber LE (1971) Characteristics of sea-surface temperature anomalies. Fish Bull 69:345–355Google Scholar
  39. Enfield DB, Alfaro EJ (1999) The dependence of Caribbean rainfall on the interaction of the tropical Atlantic and Pacific Oceans. J Clim 12:2093–2103Google Scholar
  40. Estoque MA, Luque J, Chandeck-Montzea M, Garcia J (1985) Effects of El Niño on Panama rainfall. Geofis Int 24:355–381Google Scholar
  41. Farrington IS, Park CC (1978) Hydraulic engineering and irrigation agriculture in the Moche Valley, Peru: c. a.d. 1250–1532. J Archaeol Sci 5:255–268Google Scholar
  42. Finney B (1985) Anomalous westerlies, El Niño, and the colonization of Polynesia. Am Anthropol 87:9–26Google Scholar
  43. Forman SL, Oglesby R, Webb RS (2001) Temporal and spatial patterns of Holocene dune activity on the Great Plains of North America: megadroughts and climatic links. Glob Planet Change 29:1–29Google Scholar
  44. Fraedrich K, Müller K (1992) Climate anomalies in Europe associated with ENSO extremes. Int J Climatol 12:25–31Google Scholar
  45. Garreaud RD, Aceituno P (2001) Interannual rainfall variability over the South American Altiplano. J Clim 14:2779–2789Google Scholar
  46. George RK, Waylen P, Laporte S (1998) Interannual variability in annual streamflow and the Southern Oscillation in Costa Rica. Hydrol Sci J 43:409–424CrossRefGoogle Scholar
  47. Gill RB (2000) The great Maya drought: water, life and death. University of New Mexico Press, AlbuquerqueGoogle Scholar
  48. Goddard L, Graham NE (1999) Importance of the Indian Ocean fo simulating rainfall anomalies over Eastern and Southern Africa. J Geophys Res 104:19099–19116Google Scholar
  49. Graham NE (2004) Late Holocene teleconnections between tropical Pacific climate variability and precipitation in the Western USA: evidence from proxy records. Holocene 14:436–447Google Scholar
  50. Graham NE, Hughes MH (2007) Reconstructing the Medieval Mono Lake low stands. (in review)Google Scholar
  51. Graumlich LJ (1993) A 1000-year record of temperature and precipitation in the Sierra Nevada. Quat Res 39:249–255Google Scholar
  52. Greatbatch RJ, Lu J, Peterson KA (2004) Non-stationary impact of ENSO on European winter climate. Geophys Res Lett 31 doi:10.1029/2003GL018432
  53. Grimm AM, Barros VR, Doyle ME (2000) Climate variability in Southern South America associated with El Niño and La Niño events. J Clim 13:35–58Google Scholar
  54. Grove JM (1988) The Little Ice Age. Methuen, LondonGoogle Scholar
  55. Hardy DR, Vuille M, Bradley RS (2003) Variability of snow accumulation and isotopic composition on Nevado Sajama, Bolivia. J Geophys Res 108 doi:10.1029/2003.JD003623
  56. Haug GH, Günther D, Peterson LC, Sigmon DM, Hughen KA, Aeschlimann B (2003) Climate and the collapse of the Maya civilization. Science 299:1731–1735Google Scholar
  57. Herweijer C, Seager R, Cook ER (2006) North American droughts of the mid-to-late nineteenth century: a history, simulation and implication for medieval drought. The Holocene 16:159–171Google Scholar
  58. Hodell DA, Curtis JH, Brenner M (1995) A possible role of climate in the collapse of the classic Maya civilization. Nature 375:391–394Google Scholar
  59. Hoerling MP, Kumar A, Zhang M (1997) El Niño, La Niña and the nonlinearity of their teleconnections. J Climate 10:1769–1786Google Scholar
  60. Hoerling MP, Hurrell JW, Xu T, Bates GT, Phillips AS (2004) Twentieth century North Atlantic climate change. Part II: understanding the effect of Indian Ocean warming. Clim Dyn 23:391–405Google Scholar
  61. Hoffmann G, Ramirez E, Taupin JD, Francou B, Ribstein P, Delmas R, Durr H, Gallaire R, Simoes J, Schotterer U, Stievenard M, Werner M (2003) Coherent isotope history of Andean ice cores over the last century. Geophys Res Lett 30(4):1179 doi:10.1029/2002GL014820 Google Scholar
  62. Holliday VT (2001) Stratigraphy and geochronology of upper quaternary eolian sand on the southern high plains of Texas and New Mexico, United States. Geol Soc Amer Bull 113:88–108Google Scholar
  63. Hughes MK, Diaz HF (1994) Was there a “medieval warm period” and if so, where and when? Clim Change 26:109–142Google Scholar
  64. Hughes MK, Funkhouser G (1998) Extremes of moisture availability reconstructed from tree-rings from recent millennia in the Great Basin of Western North America. In: Beniston M, Innes JL (eds) Impacts of climate variability on forests. Springer, Berlin Heidelberg New York, pp 99–107Google Scholar
  65. Hughes MK, Graumlich LJ (1996) Climatic variations and forcing mechanisms of the last 2000 years, NATO ASI Series, vol 141: Multi-millenial dendro-climatic studies from the western United States, pp 109–124Google Scholar
  66. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679Google Scholar
  67. Hurrell JW, Hoerling MP, Phillips AS, Xu T (2004) Twentieth century North Atlantic climate change. Part I: assessing determinism. Clim Dyn 23:371–389Google Scholar
  68. Jenny B, Valero-Gracés BL, Urrutia R, Kelts K, Veit H, Appleby P, Geyh M (2002) Moisture changes and fluctuations of the Westerlies in Mediterranean Central Chile during the last 2000 years: the Laguna Aculeo record (33°50′S). Quat Int 87:3–18Google Scholar
  69. Jones TL, Brown GM, Raab LM, McVickar JL, Spaulding WG, Kennett DJ, York A, Walker PL (1999) Environmental imperatives reconsidered. Curr Anthropol 40:137–170Google Scholar
  70. Kaplan A, Cane MA, Kushnir Y, Clement AC, Blumenthal MB, Rajagopalan B (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res 103:18567–18589Google Scholar
  71. Keigwin LD (1996) The little ice age and medieval warm period in the Sargasso Sea. Science 274:1504–1508Google Scholar
  72. Kennett DJ, Kennett JP (2000) Competitive and cooperative responses to climatic instability in coastal Southern California. Am Antiq 65:379–395Google Scholar
  73. Kiehl JT, Hack JJ, Bonan GB, Boville BB, Williamson DL, Rasch PJ (1998) The National Center for Atmospheric Research Community Climate Model: CCM3. J Climate 11:1131–1149Google Scholar
  74. Kiladis GN, Diaz HF (1989) Global climate anomalies associated with extremes in the Southern Oscillation. J Climate 2:1069–1090Google Scholar
  75. Kosok P (1940) The role of irrigation in ancient Peru. In: Proc. 8th American scientific congress, vol 2. Washington DC, USA, pp 168–178Google Scholar
  76. Lachniet MS, Burns SJ, Piperno D, Asmerom Y, Polyak VJ, Moy CM, Christenson K (2004) A 1500-year El Niño-Southern Oscillation history for the Isthmus of Panama from speleothem calcite. J Geophys Res 109 doi:10.1029/2004JD004694
  77. Laird KR, Fritz SC, Maasch KA, Cumming BF (1996) Greater drought intensity and frequency before ad 1200 in the Northern Great Plains, USA. Nature 384:552–554Google Scholar
  78. Laird KR, Fritz SC, Cumming BF (1998) A diatom-based reconstruction of drought intensity, duration, and frequency from Moon Lake, North Dakota: a sub-decadal record of the last 2300 years. J Paleolimnol 19:161–179Google Scholar
  79. Laird KR, Cumming BF, Wunsam S, Rusak JA, Oglesby RJ, Fritz SC, Leavitt PR (2003) Lake sediments record large-scale shifts in moisture regimes across the northern prairies of North America during the past two millennia. Proc Natl Acad Sci 100:2483–2488Google Scholar
  80. LaMarche VC (1974) Paleoclimatic inferences from long tree-ring records. Science 183:1043–1088Google Scholar
  81. Lamb HH (1965) The early medieval warm epoch and its sequel. Palaeogeogr Palaeoclim Palaeoecol 1:13–37Google Scholar
  82. Lamb HH (1977) Climate: present, past and future. Vol 2: climatic history and the future. Methuen, London, p 837Google Scholar
  83. Lau N-C (1985) Modeling the seasonal dependence of the atmospheric response to observed El Niños in 1962–76. Mon Weather Rev 113:1970–1996Google Scholar
  84. Long CJ, Whitlock C, Bartlein PJ, Millspaughi SH (1998) A 9000-year fire history from the Oregon Coast Range, based on a high-resolution charcoal study. Can J For Res 28(5):774–787Google Scholar
  85. Luterbacher JD, Dietrich E, Xoplaki E, Grosjean M, Warner H (2004) European seasonal and annual temperature variability, trends and extremes since 1500. Science 303:1499–1503Google Scholar
  86. Mangini A, Spötl C, Verdes P (2005) Reconstruction of temperature in the Central Alps during the past 2000 yr from a δ18O stalagmite record. Earth Planet Sci Lett 235:741–751 doi:10.1016/j.epsl.2005.05.010 Google Scholar
  87. Mann ME, Cane MA, Zebiak SE, Clement A (2005) Volcanic and solar forcing of the tropical Pacific over the past 1000 years. J Climate 18:447–456Google Scholar
  88. Mantua JN, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1080Google Scholar
  89. Mariotti A, Zeng N, Lau K-M (2002) Euro-Mediterranean rainfall and ENSO – a seasonally varying relationship. Geophys Res Lett 29 doi:10.1029/2001GL014248
  90. Mason JA, Swinehart JB, Goble RJ, Loope DB (2004) Late Holocene dune activity linked to hydrological drought, Nebraska Sand Hills, USA. Holocene 14:209–217Google Scholar
  91. Meehl GA, Arblaster JM (1998) The Asian-monsoon and El Niño-Southern Oscillation in the NCAR climate system model. J Climate 11:1356–1385Google Scholar
  92. Mehringer PJ, Wigand PE (1990) Comparison of late Holocene environments from woodrat middens and pollen: Diamond Craters, Oregon. In: Betancourt JL, Van Devender TR, Martin PS (eds) Fossil packrat middens: the last 40,000 years of biotic changes. University of Arizona Press, TucsonGoogle Scholar
  93. Meko DM, Therrell MD, Baisan CH, Hughes MK (2001) Sacramento River flow reconstructed to a.d. 869 from tree rings. J Am Water Resour Assoc 37:1029–1039Google Scholar
  94. Merkel U, Latif M (2002) A high resolution AGCM study of the El Niño impact on the North American/European sector. Geophys Res Lett 29 doi:10.1029/2001GL013726
  95. Millar CI, King JC, Westfall RD, Alden HA, Delany DL (2006) Late Holocene forest dynamics, volcanism, and climate change at Whitewing Mountain and San Joaquin Ridge, Mono County, Sierra Nevada, CA, USA. Quat Res 66:273–287Google Scholar
  96. Mitsuguchi T, Matsumoto E, Abe O, Uchida T, Isdale PJ (1996) Mg/Ca thermometry in coral skeletons. Science 274:961–963Google Scholar
  97. Mohr JA, Whitlock C, Skinner CN (2000) Postglacial vegetation and fire history, Eastern Klamath Mountains, California, USA. Holocene 10:587–601Google Scholar
  98. Moseley ME, Deeds EE (1982) The land in front of Chan Chan: agrarian expansion, reform, and collapse in the Moche Valley. In: Moseley M, Day K (eds) Chan Chan: Andean Desert City. University of New Mexico Press, Albuquerque, pp 25–53Google Scholar
  99. Moseley ME, Feldman RA, Ortloff CR (1981) Living with crises: human perception of process and time. In: Nitecki M (ed) Biotic crises in ecological and evolutionary time. Academic, New York, pp 231–267Google Scholar
  100. Moy CM, Seltzer GO, Rodbell DT, Anderson DM (2002) Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420:162–165Google Scholar
  101. Muhs DR (1985) Age and paleo-climatic significance of Holocene sand dunes in Northeastern Colorado. Association of American Geographers Annals 75:566–682Google Scholar
  102. Muhs DR, Stafford TW Jr, Swinehart JB, Cowherd SD, Mahan SA, Bush CA, Madole RF, Maat PB (1997) Late Holocene eolian activity in the mineralogically mature Nebraska Sand Hills. Quat Res 48:162–176Google Scholar
  103. Mutai CC, Ward MN (2000) East African rainfall and tropical circulation/convection on intraseasonal to interannual timescales. J Climate 13:3915–3939Google Scholar
  104. Namias J (1970) Macroscale variations in sea surface temperatures in the North Pacific. J Geophys Res 75:565–582CrossRefGoogle Scholar
  105. Nials FL, Deeds EE, Mosley ME, Pozorski SG, Feldman R (1979a) El Niño: the catastrophic flooding of coastal Peru. Part I Field Mus Nat Hist Bull 50(7):4–14Google Scholar
  106. Nials FL, Deeds EE, Mosley ME, Pozorski SG, Feldman R (1979b) El Niño: the catastrophic flooding of coastal Peru. Part II Field Mus Nat Hist Bull 50(8):4–10Google Scholar
  107. Nicholson S, Entekhabi D (1987) Rainfall variability in equatorial and Southern Africa: relationships with sea-surface temperature atmosphere coupling. J Appl Meteorol Clim 26:561–578Google Scholar
  108. Nicholson S, Kim J (1997) The relationship of the El Niño-Southern Oscillation to African rainfall. Int J Climatol 17:117–135Google Scholar
  109. Nigam S, Barlow M, Berbery EH (1999) Analysis links Pacific decadal variability to drought and streamflow in the United States. EOS, Transactions, American Geophysical Union 80:621–625Google Scholar
  110. Nunn PD (1994) Oceanic islands. Blackwell, Oxford, UK, p 418Google Scholar
  111. Nunn PD (2000) Environmental catastrophe in the Pacific Islands around a.d. 1300. Geoarcheology 15:715–740Google Scholar
  112. Ogallo LJ, Janowiak JE, Halpert MS (1988). Teleconnections between East African seasonal rainfall and global sea surface temperature anomalies. J Meteorol Soc Jpn 66:807–822Google Scholar
  113. Otto-Bliesner BL, Brady EC, Shin SI, Liu Z, Shields C (2003) Modeling El Niño and its tropical teleconnections during the last glacial-interglacial cycle. Geophys Res Lett 30:2198 doi:10.1029/2003GL018553 Google Scholar
  114. Petersen KL (1988) Climate and the Dolores River Anasazi: a paleoenvironmental reconstruction from a 10,000-year pollen record, La Plata Mountains, Southwestern Colorado. University of Utah Press, Salt Lake CityGoogle Scholar
  115. Petersen KL (1994) A warm and wet Little Climatic Optimum and a cold and dry Little Ice Age in the Southern Rocky Mountains, U.S.A. Clim Change 26:243–269Google Scholar
  116. Peterson LC, Haug GH (2006) Variability in the mean latitude of the Atlantic Intertropical Convergence Zone as recorded by riverine input of sediments to the Cariaco Basin (Venezuela). Palaeogeogr Palaeoclimatol Palaeoecol 234(1):97–113Google Scholar
  117. Pfister C, Luterbacher J, Schwarz-Zanetti G, Wegmann M (1998) Winter air temperature variations in Western Europe during the Early and High Middle Ages (ad 750–1300). Holocene 8:535–552Google Scholar
  118. Poveda G, Mesa OJ (1996) Extreme phases of ENSO and their influence on the hydrology of Colombia. Ing Hidrául Méx XI:21–37Google Scholar
  119. Pozo-Vázquez D, Esteban-Parra MJ, Rodrigo FS, Castro-Diez Y (2001) The association between ENSO and winter atmospheric circulation and temperature in the North Atlantic region. J Climate 14:3408–3420Google Scholar
  120. Pozo-Vázquez D, Gamiz-Portis SR, Tovar-Pescador J, Esteban-Para MJ, Castro-Díez Y (2005) El Niño-Southern Oscillation events and associated winter European precipitation anomalies. Int J Climatol 25:17–31Google Scholar
  121. Proctor CJ, Baker A, Barnes WL, Gilmour MA (2000) A thousand year speleothem proxy record of North Atlantic climate from Scotland. Clim Dyn 16:815–820Google Scholar
  122. Proctor CJ, Baker A, Barnes WL (2002) A three thousand year record of North Atlantic climate. Clim Dyn 19:449–454Google Scholar
  123. Raab IM, Larson DO (1997) Medieval climatic anomaly and punctuated cultural evolution in coastal Southern California. Am Antiq 62:319–336Google Scholar
  124. Rajagopalan B, Cook E, Lall U, Rey BK (2000) Spatiotemporal variability of ENSO and SST teleconnections to summer drought over the United States during the 20th century. J Clim 13:4244–4255Google Scholar
  125. Rasmussen DM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110:354–384Google Scholar
  126. Redmond KT, Koch RW (1991) Surface climate and streamflow variability in the Western United States and their relationship to large-scale circulation indices. Water Resour Res 27:2381–2399Google Scholar
  127. Rein B, Lückge A, Sirocko F (2004) A major Holocene ENSO anomaly in the medieval period. Geophys Res Lett 31:L17211 doi:10.1029/2004GL020161 Google Scholar
  128. Rein B, Lückge A, Reinhardt L, Sirocko F, Wolf A, Dullo W-C (2005) El Niño variability off Peru during the last 20,000 years. Paleoceanography 20 doi:10.1029/2004PA001099
  129. Rodbell DT, Seltzer GO, Anderson DM, Abbott MB, Enfield DB, Newman JH (1999) An ∼15,000 year record of El Niño-driven alluviation in Southwestern Ecuador. Science 2883:516–520Google Scholar
  130. Roeckner E, Bengtsson L, Feichter J, Lelieveld J, Rodhe H (1999) Transient climate change simulations with a coupled atmosphere-ocean GCM including the tropospheric sulphur cycle. J Climate 12:3004–3032Google Scholar
  131. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño-Southern Oscillation. Mon Weather Rev 115:1606–1626Google Scholar
  132. Rowell DP, Ininda JM, Ward MN (1994) The impact of global sea surface temperature patterns on seasonal rainfall in East Africa. In: Proc. Int. Conf. Monsoon Variability and Prediction. Trieste, Italy, 9–13 May 1994, WMO/TD 619:666–672Google Scholar
  133. Schonher T, Nicholson SE (1989) The relationship between California rainfall and ENSO events. J Clim 2:1258–1269Google Scholar
  134. Seager R, Kushnir Y, Herweijer C, Naik N, Velez J (2005) Modeling of tropical forcing of persistent droughts and pluvials over Western North America: 1856–2000. J Clim 18:4065–4088Google Scholar
  135. Seimon A (2003) Improving climate signal representation in tropical ice cores. A case study from the Quelccaya Ice Cap, Peru. Geophys Res Lett 30:1772 doi:10.1029/2003GL017191 Google Scholar
  136. Shabalova MV, van Engelen FV (2003) Evaluation of a reconstruction of winter and summer temperatures in the Low Countries. Clim Change 58:219–242Google Scholar
  137. Shimada I, Schaaf CB, Thompson LG, Mosley-Thompson E (1991) Cultural impacts of severe droughts in the prehistoric Andes: application of a 1,500-year ice core precipitation record. World Archeology 22:247–270CrossRefGoogle Scholar
  138. Smith TM, Reynolds RW (2004) Extended reconstruction of global sea surface temperature data based on COADS data (1854–1997). J Climate 17:2466–2477Google Scholar
  139. Sridhar V, Loope DB, Swinehart JB, Mason JA, Oglesby RJ, Rowe CM (2006) Large wind shift on the Great Plains during the Medieval Warm Period. Science 313:345–347Google Scholar
  140. Starratt SW (2004) Diatoms as indicators of late Holocene freshwater flow variations in the San Francisco Bay estuary, Central California, USA. In: Poulin M (ed) Proceedings of the Seventeenth International Diatom Symposium, Ottawa, Canada, 25th–31st August 2002. Biopress, Bristol, UK, pp 371–397Google Scholar
  141. Stine SW (1990) Late Holocene fluctuations of Mono Lake, Eastern California. Paleogeography, Paleoclimatology and Paleoecology 78:333–381Google Scholar
  142. Stine S (1994) Extreme and persistent drought in California and Patagonia during medieval time. Nature 369:546–549Google Scholar
  143. Stott LD, Cannariato KG, Thunell R, Haug GH, Koutavas A, Lund S (2004) Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch. Nature 431:56–59Google Scholar
  144. Swetnam TW (1993) Fire history and climate change in Giant Sequoia Groves. Science 262:885–889Google Scholar
  145. Thompson LG, Mosley-Thompson E, Arnao BM (1984) Major El Niño/Southern Oscillation events recorded in stratigraphy of the tropical Quelccaya Ice Cap. Science 226:50–52Google Scholar
  146. Thompson LG, Mosley-Thompson E, Henderson KA (2000) Ice-core palaeoclimate records in tropical South America since the last glacial maximum. J Quat Sci 15:377–394Google Scholar
  147. Timmermann A, Oberhuber J, Bacher A, Esch M, Latif M, Roeckner E (1999) Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature 398:694–696Google Scholar
  148. Tourre YM, White WB (1995) ENSO signals in global upper-ocean temperature. J Phys Oceanogr 25:1317–1332Google Scholar
  149. van Engelen AFV, Buisman J, Ijnsen F (2001) A millennium of weather, winds and water in the Low Countries. In: Jones PD et al. (eds) History and climate: memories of the future? Kluwer Academic, New York, pp 101–124Google Scholar
  150. van Loon H, Madden RA (1981) The Southern Oscillation: Part I: Global associations with pressure and temperature in northern winter. Mon Weather Rev 109(109):1150–1672Google Scholar
  151. Verschuren D, Laird K, Cumming B (2000) Rainfall and drought in east Africa during the past 1100 years. Nature 403:410–414Google Scholar
  152. Vuille M, Bradley RS, Werner M, Healy R, Keimig F (2003a) Modeling δ18O in precipitation over the tropical Americas: 1. Interannual variability and climatic controls. J Geophys Res 108(D6):4174 doi:10.1029/2001JD002038 Google Scholar
  153. Vuille M, Bradley RS, Healy R, Werner M, Hardy DR, Thompson LG, Keimig F (2003b) Modeling δ18O in precipitation over the tropical Americas: 2. Simulation of the stable isotope signal in Andean ice cores. J Geophys Res 108(D6):4175 doi:10.1029/2001JD002039 Google Scholar
  154. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Weather Rev 109:784–812Google Scholar
  155. Wigand PE (1987) Diamond Pond, Harney County, Oregon: vegetation history and water table in the Eastern Oregon desert. Great Basin Nat 47:427–458Google Scholar
  156. Wigand PE (1997) A late Holocene pollen record from Lower Pahranagat Lake, Southern Nevada, USA: high resolution paleoclimatic records and analysis of environmental responses to climate change. In: Proceedings of the Thirteenth Annual Pacific Climate (PACLIM) Workshop, Asilomar, CA, April 14–17, 1996. California Department of Water Resources Technical Report 53 of the Interagency Ecological Program for the Sacramento-San Joaquin Esturary, pp 63–77Google Scholar
  157. Wigand PE, Rhode D (2002) Great Basin vegetation history and aquatic systems: the last 150,000 years. In: Hershler R, Madsen DB, Currey DR (eds) Great Basin aquatic systems history. Smithsonian contributions to earth sciences 33. Smithsonian Institution, Washington, DC, pp 309–367Google Scholar
  158. Woodroffe CD, Gagan MK (2000) Coral microatolls from the Central Pacific record late Holocene El Niño. Geophys Res Lett 27:1511–1514Google Scholar
  159. Woodroffe CD, Beech MR, Gagan MK (2003) Mid-late Holocene El Niño variability in the equatorial Pacific from coral micro-atolls. Geophys Res Lett 30:1358 doi:10.1029/2002GL015868 Google Scholar
  160. Yuan F, Linsley BK, Lund SP, McGeehin JP (2004) A 1200 year record of hydrologic variability in the Sierra Nevada from sediments in Walker Lake, Nevada. Geochemistry, Geophysics and Geosystems 5 2004 doi:10.1029/2003GC000652

Copyright information

© Springer Science+Business Media, B.V. 2007

Authors and Affiliations

  • Nicholas E. Graham
    • 1
    • 2
  • Malcolm K. Hughes
    • 3
  • Caspar M. Ammann
    • 4
  • Kim M. Cobb
    • 5
  • Martin P. Hoerling
    • 6
  • Douglas J. Kennett
    • 7
  • James P. Kennett
    • 8
  • Bert Rein
    • 9
  • Lowell Stott
    • 10
  • Peter E. Wigand
    • 11
    • 12
  • Taiyi Xu
    • 6
  1. 1.Hydrologic Research CenterSan DiegoUSA
  2. 2.Scripps Institution of OceanographyLa JollaUSA
  3. 3.University of ArizonaTucsonUSA
  4. 4.National Center for Atmospheric ResearchBoulderUSA
  5. 5.Georgia Technical InstituteAtlantaUSA
  6. 6.NOAA Climate Diagnostics CenterBoulderUSA
  7. 7.University of OregonEugeneUSA
  8. 8.University of California Santa BarbaraSanta BarbaraUSA
  9. 9.Johannes Gutenberg-Universität MainzMainzGermany
  10. 10.University of Southern CaliforniaLos AngelesUSA
  11. 11.University of NevadaRenoUSA
  12. 12.California State UniversityBakersfieldUSA

Personalised recommendations