Climatic Change

, Volume 81, Supplement 1, pp 267–280 | Cite as

Extremes of near-surface wind speed over Europe and their future changes as estimated from an ensemble of RCM simulations

Article

Abstract

In this study, we analyse the uncertainty of the effect of enhanced greenhouse gas conditions on windiness projected by an ensemble of regional model simulations driven by the same global control and climate change simulations. These global conditions, representative for 1961–1990 and 2071–2100, were prepared by the Hadley Centre based on the IPCC SRES/A2 scenario. The basic data sets consist of simulated daily maximum and daily mean wind speed fields (over land) from the PRUDENCE data archive at the Danish Meteorological Institute. The main focus is on the results from the standard 50 km-resolution runs of eight regional models. The best parameter for determining possible future changes in extreme wind speeds and possible change in the number of storm events is maximum daily wind speed. It turned out during this study that the method for calculating maximum daily wind speed differs among the regional models. A comparison of simulated winds with observations for the control period shows that models without gust parameterisation are not able to realistically capture high wind speeds. The two models with gust parametrization estimate an increase of up to 20% of the number of storm peak (defined as gusts ≥ 8 Bft in this paper) events over Central Europe in the future. In order to use a larger ensemble of models than just the two with gust parameterisation, we also look at the 99th percentile of daily mean wind speed. We divide Europe into eight sub-regions (e.g., British Isles, Iberian Peninsula, NE Europe) and investigate the inter-monthly variation of wind over these regions as well as differences between today’s climate and a possible future climate. Results show differences and similarities between the sub-regions in magnitude, spread, and seasonal tendencies. The model ensemble indicates a possible increase in future mean daily wind speed during winter months, and a decrease during autumn in areas influenced by North Atlantic extra-tropical cyclones.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beniston M, Stephenson DB, Christensen OB, Ferro C, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof J, Schöll R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate projections. Clim Change, doi:10.1007/s10584-006-9226-z (this issue)
  2. Brasseur O (2001) Development and application of a physical approach to estimating wind gusts. Mon Weather Rev 129:5–25CrossRefGoogle Scholar
  3. Brázdil R, Dobrovolny P (2001) History of strong winds in the Czech lands: causes, fluctuations, impacts. Geographica Polonica 74:11–27Google Scholar
  4. Castro M, Fernández C, Gaertner MA (1993) Description of a mesoscale atmospheric numerical model. In: Díaz JI, Lions JL (eds), Mathematics, climate and environment. Rech. Math. Appl. Ser. Mason, pp 230–253Google Scholar
  5. Christensen JH, Christensen OB, Lopez P, van Meijgaard E, Botzet M (1996) The HIRHAM4 Regional Atmospheric Model, scientific report 96-4, DMI, Copenhagen, 51 ppGoogle Scholar
  6. Christensen JH, Carter TR, Rummukainen M (2007) Evaluating the performance and utility of regional climate models: the PRUDENCE project. Clim Change, doi:10.1007/s10584-006-9211-6 (this issue)
  7. Crossley JF, Polcher J, Cox PM, Gedney N, Planton S (2000) Uncertainties linked to land-surface processes in climate change simulations. Clim Dyn 16:949–961CrossRefGoogle Scholar
  8. Déqué M, Rowell DP, Lüthi D, Giorgi F, Christensen JH, Rockel B, Jacob D, Kjellström E, de Castro M, van den Hurk B (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Clim Change, doi:10.1007/s10584-006-9228-x (this issue)
  9. De Rooy WC, Kok K (2004) A combined physical-statistical approach for the downscaling of model wind speeds. Weather Forecast 19:485–495CrossRefGoogle Scholar
  10. Dorland C, Tol RSJ, Palutikof J (1999) Vulnerability of the Netherlands and Northwest Europe to storm damage under climate change. Clim Change 43:415–535CrossRefGoogle Scholar
  11. Döscher R, Willén U, Jones C, Rutgersson A, Meier HEM, Hansson U, Graham LP (2002) The development of the coupled regional ocean-atmosphere model RCAO. Boreal Environ Res 7:183–192Google Scholar
  12. Giorgi F, Francisco R (2000) Uncertainties in regional climate change prediction: a regional analysis of ensemble simulations with the HADCM2 coupled AOGCM. Clim Dyn 16:169–182CrossRefGoogle Scholar
  13. Goyette S, Brasseur O, Beniston M (2003) Application of a new wind gust parameterization: Multiscale case studies performed with the Canadian regional climate model. J Geophys Res 108(D13):4374, doi:10.1029/202JD002646
  14. Grachev AA, Fairall CW, Larson SE (1998) On the determination of the neutral drag coefficient in the convective boundary layer. Boundary-Layer Meteorol 86:257–278CrossRefGoogle Scholar
  15. IPCC (2001) Climate change. The scientific bases. Cambridge University, Press, Cambridge, UK (881 pp)Google Scholar
  16. Jacob D (2001) A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77:61–73CrossRefGoogle Scholar
  17. Jacob D, Bärring L, Christensen OB, Christensen JH, de Castro M, Déqué M, Giorgi F, Hagemann S, Hirschi M, Jones R, Kjeström E, Lenderink G, Rockel B, Sánchez ES, Schär C, Seneviratne SI, Somot S, van Ulden A, van den Hurk B (2007) An intercomparison of regional climate models for Europe: design of the experiments and model performance. Clim Change, doi:10.1007/s10584-006-9213-4 (this issue)
  18. Jones RG, Murphy JM, Noguer M (1995) Simulation of climate change over Europe using a nested regional-climate model I: Assessment of control climate, including sensitivity to location of lateral boundaries. Q J R Meteorol Soc 121:1413–1449Google Scholar
  19. Leckebusch GC, Ulbrich U (2004) On the relationship between cyclones and extreme wind storm events over Europe under climate change. Glob Planet Change 44:181–193CrossRefGoogle Scholar
  20. Lefebvre Ch (2001) Häufigkeit von Stürmen im Nordatlantik, Deutscher Wetterdienst, http://www.dwd.de/de/FundE/Klima/KLIS/prod/spezial/sturm/haeufigkeit_stuerme.pdf, pp 6
  21. Lenderink G, van den Hurk B, van Meijgaard E, van Ulden A, Cuijpers H (2003) Simulation of present-day climate in RACMO2: first results and model development. KMNI, Technical Report TR-252, http://www.knmi.nl/samenw/regioklim/science.html, pp 24
  22. Lüthi D, Cress A, Frei C, Schär C (1996) Interannual variability and regional climate simulations. Theor Appl Climatol 53:185–209CrossRefGoogle Scholar
  23. Majewski D (1991) The Europa Modell of the Deutscher Wetterdienst. Proceedings of the ECMWF Seminar on Numerical Methods in Atmospheric Models, 1991 vol II, Reading UK, pp147–191Google Scholar
  24. Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A et al (2000) Emission scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK (p599)Google Scholar
  25. Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3. Clim Dyn 16:123–146CrossRefGoogle Scholar
  26. Pryor SC, Barthelmie RJ, Kjellström E (2005a) Potential climate change impact on wind energy resources in northern Europe: analyses using a regional climate model, Climate Dynamics, doi:10.1007/s00382-005-0072-x
  27. Pryor SC, Schoof JT, Barthelmie RJ (2005b) Empirical downscaling of wind speed probability distributions. J Geophys Res 110:D19109, doi:10.1029/2005.JD005899
  28. Räisänen J, Hansson U, Ullerstig A, Döscher R, Graham LP, Jones C, Meier M, Samuelsson P, Willén U (2003) SMHI Reports Meteorology and Climatology, No. 101, pp 61Google Scholar
  29. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Frich P (2000) Sea-Ice and Sea Surface Temperature Data Set, 1871–1999, Hadley Centre Technical Note 17, Hadley Centre for Climate Prediction and Research, Met Office, UKGoogle Scholar
  30. Schiesser HH, Pfister C, Bader J (1997) Winter Storms in Switzerland North of the Alps 1864/1865–1993/1994. Theor Appl Climatol 58:1–9CrossRefGoogle Scholar
  31. Schrodin R (ed) (1995) Dokumentation des EM/DM Systems, Deutscher Wetterdienst, Offenbach a. MainGoogle Scholar
  32. Steppeler J, Doms G, Schättler U, Bitzer HW, Gassmann A, Damrath U, Gregoric G (2003) Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteorol Atmos Phys 82:75–96CrossRefGoogle Scholar
  33. Woth K (2005) North sea storm surge statistics based on projections in a warmer climate: How important are the driving GCM and the chosen emission scenario? Geophys Res Lett 32:L22708, doi:10.1029/2005GL023762
  34. Woth K, Weisse R, von Storch H (2005) Climate change and North Sea storm surge extremes: An ensemble study of storm surge extremes expected in a changed climate projected by four different Regional Climate Models. Ocean Dyn doi:10.1007/s10236-005-0024-3
  35. Zwiers FW, Kharin VV (1998) Changes in the extremes of the climate simulated by CCC GCM2 under CO2 doubling. J Climate 11:2200–2222CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2007

Authors and Affiliations

  1. 1.GKSS Research CentreGeesthachtGermany

Personalised recommendations