Climatic Change

, Volume 82, Issue 1–2, pp 163–177 | Cite as

Seasonal and interannual variability of carbon dioxide and water balances of a grassland

  • Adrie F. G. Jacobs
  • Bert G. Heusinkveld
  • Albert A. M. Holtslag
Open Access
Article

Abstract

There is great international concern over the increase of atmospheric carbon dioxide and its effect on vegetation and climate, and vice versa. Many studies on this issue are based on climate model calculations or indirect satellite observations. In contrast we present a 12-year study (1994–2005) on the net ecosystem exchange of carbon dioxide (NEE) and precipitation surplus (i.e., precipitation–evaporation) of a grassland area in the centre of the Netherlands. On basis of direct flux observations and a process-based model we study and quantify the carbon uptake via assimilation and carbon release via soil and plant respiration. It appears that nearly year-round the assimilation term dominates, which indicates an accumulation of carbon dioxide. The mean net carbon uptake for the 12-year period is about 3 tonnes C per hectare, but with a strong seasonal and interannual variability depending on the weather and water budget. This variability may severely hamper the accurate quantification of carbon storage by vegetation in our present climates and its projection for future climates.

References

  1. Abramowitz M, Stegun IA (1965) Handbook of Mathematical Functions. Dover, Mineola, New York, p 1046Google Scholar
  2. Beljaars ACM, Holtslag AAM (1991) Flux parameterization over land surfaces for atmospheric models. J Appl Meteorol 30:327–341CrossRefGoogle Scholar
  3. Betts AK, Helliker B, Berry J (2004) Coupling between CO2, water vapor, temperature and radon and their fluxes in an idealized equilibrium boundary layer over land. J Geophys Res 109(D18103)Google Scholar
  4. Collatz GJ, Ball JT, Grivet C, Berry JA (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration. Agric Forest Meteorol 54:107–136Google Scholar
  5. Collatz GJ, Ribas-Carbo M, Ball JA (1992) Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Austr J Plant Physiol 19:519–538Google Scholar
  6. Cox PM, Betts RA, Jones CD, Spall SA, Totterdel IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187CrossRefGoogle Scholar
  7. Goudriaan J, Van Laar HH, Van Keulen H, Louwerse W (1985) Photosynthesis, CO2 and plant production. In: Day W, Atkin RK (Ed) Wheat growth and modeling. NATO ASI Series, Series A, vol 86. Plenum, New York, pp107–122Google Scholar
  8. Goulden ML, Munger JW, Fan S-M, Daube BC, Wofsy SC (1996) Exchange of carbon dioxide by a deciduous forest: Response to interannual climate variability. Science 271:1576–1578CrossRefGoogle Scholar
  9. Grammerer K (1989) Respiration of soil and vegetation in grassland. MSc-thesis, University of Nebraska, Lincoln, 119 ppGoogle Scholar
  10. Hadley M (1993) Grasslands for sustainable ecosystems. In: Grasslands for our world. Ed. Baker MJ. SIR, Wellington, New Zealand.Google Scholar
  11. Ham JM, Knapp AK (1998) Fluxes of CO2, water vapor, and energy from a prairie ecosystem during the seasonal transition from carbon sink to carbon source. Agric For Meteorol 89:1–14CrossRefGoogle Scholar
  12. Hu S, Chapin III FS, Firestone MK Field CB, Chiariello NR (2001) Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature 409:188–190CrossRefGoogle Scholar
  13. Jacobs CMJ, De Bruin HAR (1992) The sensitivity of regional transpiration to land-surface characteristics: Significance of feedback. Climate 5:683–698CrossRefGoogle Scholar
  14. Jacobs CMJ (1994) Direct impact of atmospheric CO2 enrichment on regional transpiration. PhD-thesis, Wageningen University, 179 ppGoogle Scholar
  15. Jacobs AFG, Ronda RJ, Holtslag AAM (2003a) Water vapour and carbon dioxide fluxes over bog vegetation. Agric For Meteorol 116:103–112CrossRefGoogle Scholar
  16. Jacobs AFG, Heusinkveld BG, Holtslag AAM (2003b) Carbon dioxide and water vapour flux densities over a grassland area in the Netherlands. Int J Climatol 23:1663–1675CrossRefGoogle Scholar
  17. Jacobs AFG, Jacobs CM, Heusinkveld BG (2005) CO2 Respiration in a grassland area (submitted)Google Scholar
  18. Jacobs AFG, Heusinkveld BG, Wichink Kruit RJ (2006) Contribution of dew to the water budget of a grassland area in The Netherlands. Water Resour Res 42:WO3415 doi:10.1029/2005WR004055
  19. Jury WA, Gardner WR, Gardner WH (1991) Soil physics, Wiley, New YorkGoogle Scholar
  20. Keuning JA (1988) Grashoogtemeter hulpmiddel voor schatting grashoeveelheid. Meststoffen 1:1–3(in Dutch)Google Scholar
  21. Kim J, Verma SB (1990) Carbon dioxide exchange in a temperate grassland ecosystem. Bound-Layer Meteorol 52:135–149CrossRefGoogle Scholar
  22. Kim J, Verma SB, Clement RJ (1992) Carbon dioxide budget in temperate grassland ecosystem. J Geophysical Res 97:6057–6063CrossRefGoogle Scholar
  23. Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323CrossRefGoogle Scholar
  24. McMillen RT (1986) A BASIC program for eddy-correlation in non-simple terrain, NOAA Tech. Memo. ERLARL-147, NOAA, Air Resources Lab., Oak Ridge MDGoogle Scholar
  25. McMillen RT (1988) An eddy-correlation technique with extended applicability to non-simple terrain. Bound-Layer Meteorol 43:231–245CrossRefGoogle Scholar
  26. Meyers TP (2001) A comparison of summertime water and CO2 fluxes over rangeland for well watered and drought conditions. Agric For Meteorol 106:205–214CrossRefGoogle Scholar
  27. Moore CJ (1986) Frequency response corrections for eddy-correlation systems Bound-Layer Meteorol 37:17–35CrossRefGoogle Scholar
  28. Nelson JA, Morgan JA, LeCain DR, Moiser AR, Milchunas DG, Parton BA (2004) Elevated CO2 increases soil moisture and enhances plant water relations in a long-term field study in semi-arid shortgrass steppe of Colorado. Plant Soil 259:169–179CrossRefGoogle Scholar
  29. Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker DJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563CrossRefGoogle Scholar
  30. Nitschelm JJ, Luscher A, Hartwig UA, Van Kessel C (1997) Using stable isotopes to determine soil carbon input differences under ambient and elevated atmospheric CO2 conditions. Glob Chang Biol 3:411–416CrossRefGoogle Scholar
  31. Norman JM, Garcia R, Verma SB (1992) Soil surface CO2 fluxes and carbon budget of a grassland. J Geophysical Res 92:18845–18853Google Scholar
  32. Ronda RJ, De Bruin HAR, Holtslag AAM (2001) Representation of the canopy conductance in modelling the surface energy budget for low vegetation. J Appl Meteorol 40:1431–1444CrossRefGoogle Scholar
  33. Schnel S (2004) Soil-atmospheric exchange of CO2. MSc-thesis, Department Meteorology and Air Quality, Wageningen University, 54 ppGoogle Scholar
  34. Soegaard H, Jensen NO, Boegh E, Hasager CB, Schelde K, Thomsen A (2003) Carbon dioxide exchange over agricultural landscape using eddy-correlation and footprint modelling. Agric For Meteorol 114:153–173CrossRefGoogle Scholar
  35. Suyker AE, Verma SB (2001) Year-round observations of the net ecosystem exchange of carbon dioxide in a native tallgrass prairie. Glob Chang Biol 7:279–290CrossRefGoogle Scholar
  36. Valentini R, Matteucci G, Dolman AJ, Schulze E-D, Rebman C, Moors EJ, Granier A, Gross P, Jensen NO, Pilegaard K, Lindroth A, Grelle A, Bernhofer C, Gruenwald T, Aubinet M, Ceulemans R, Kowalski AS, Vesala T, Rannik U, Berbigier P, Loustau D, Gudmundsson J, Thorgeirsson H, Ibrom A, Morgenstern K, Clement R, Moncrieff J, Montagnani L, Minerbi S, Jarvis PG (2000) Respiration as the main determinant of carbon balance in European forests. Nature 404:861–865CrossRefGoogle Scholar
  37. Van den Hurk BJJM (1996) Sparse canopy parameterizations for meteorological models. PhD thesis, Department of Meteorology Wageningen University, Wageningen, 271 ppGoogle Scholar
  38. Van Ginkel JH, Whitmore AP, Gorissen A (1999) Lolium perenne grasslands may function as a sink for atmospheric carbon dioxide. J Environ Qual 28:1580–1584CrossRefGoogle Scholar
  39. Verma SB, Kim J, Clement RJ (1992) Momentum, water vapor, and carbon dioxide exchange at a centrally located prairie site during FIFE. J Geophysical Res 97:18629–18660Google Scholar
  40. Wang S, Grant RF, Verseghy DL, Black TA (2002) Modelling carbon dynamics of boreal forest ecosystems using the Canadian land surface scheme. Clim Change 55:451–477CrossRefGoogle Scholar
  41. Webb EK, Pearman GI, Leuning R (1980) Corrections of flux measurements for density effects due to heat and water vapour transfer. Q J R Meteorol Soc 106:85–100CrossRefGoogle Scholar
  42. Wofsy SC, Goulden ML, Munger JW, Fan S-M, Backwin PS, Daube BC, Bassow SL, Bazzaz FA (1993) Net CO2 exchange in a mid-latitude forest. Science 260:1314–1317CrossRefGoogle Scholar
  43. Zhang H, Nobel PS (1996) Dependency of ci/ca and leaf transpiration efficiency on the vapour pressure deficit. Aust J Plant Physiol 232:561–568CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Adrie F. G. Jacobs
    • 1
  • Bert G. Heusinkveld
    • 1
  • Albert A. M. Holtslag
    • 1
  1. 1.Dept. Meteorology and Air QualityWageningen UniversityAP WageningenThe Netherlands

Personalised recommendations