Imprecise probabilities of climate change: aggregation of fuzzy scenarios and model uncertainties

Abstract

Whilst the majority of the climate research community is now set upon the objective of generating probabilistic predictions of climate change, disconcerting reservations persist. Attempts to construct probability distributions over socio-economic scenarios are doggedly resisted. Variation between published probability distributions of climate sensitivity attests to incomplete knowledge of the prior distributions of critical parameters and structural uncertainties in climate models. In this paper we address these concerns by adopting an imprecise probability approach. We think of socio-economic scenarios as fuzzy linguistic constructs. Any precise emissions trajectory (which is required for climate modelling) can be thought of as having a degree of membership in a fuzzy scenario. Next, it is demonstrated how fuzzy scenarios can be propagated through a low-dimensional climate model, MAGICC. Fuzzy scenario uncertainties and imprecise probabilistic representation of climate model uncertainties are combined using random set theory to generate lower and upper cumulative probability distributions for Global Mean Temperature anomaly. Finally we illustrate how non-additive measures provide a flexible framework for aggregation of scenarios, which can represent some of the semantics of socio-economic scenarios that defy conventional probabilistic representation.

This is a preview of subscription content, log in to check access.

References

  1. Allen M, Raper S, Mitchell J (2001) Climate change—uncertainty in the IPCC’s third assessment report. Science 293(5529):430–433

    Article  Google Scholar 

  2. Anderson D, Winne S (2004) Modelling innovation and threshold effects in climate change mitigation. Tyndall Centre working paper 59

  3. Andronova NG, Schlesinger ME (2001) Objective estimation of the probability density function for climate sensitivity. J Geophys Res Atmospheres 106(D19):22605–22611

    Article  Google Scholar 

  4. Ben-Haim Y (2001) Information-gap decision theory: decisions under severe uncertainty. Academic, San Diego

    Google Scholar 

  5. Curley SP, Golden JI (1994) Using belief functions to represent degrees of belief. Org Behav Hum Decis Process 58:271–303

    Article  Google Scholar 

  6. Dessai S, Hulme M (2003) Does climate policy need probabilities? Tyndall Centre working paper 34

  7. Dubois D, Prade H (1990) Measuring properties of fuzzy sets: a general technique and its use in fuzzy query evaluation. Fuzzy Sets Syst 38:137–152

    Article  Google Scholar 

  8. Ferson S, Tucker WT (2005) Probability bounds analysis is a global sensitivity analysis. Reliab Eng Syst Saf 91(10,11):1435–1442

    Google Scholar 

  9. Fetz T, Oberguggenberger M (2004) Propagation of uncertainty through multivariate functions in the framework of sets of probability measures. Reliab Eng Syst Saf 85(1–3):73–87

    Article  Google Scholar 

  10. Forest CE, Stone PH, Sokolov AP, Allen MR, Webster MD (2002) Quantifying uncertainties in climate system properties with the use of recent climate observations. Science 295(5552):113–117

    Article  Google Scholar 

  11. Giorgi F, Francisco R (2000) Evaluating uncertainties in the prediction of regional climate change. Geophys Res Lett 27(9):1295–1298

    Article  Google Scholar 

  12. Grabisch M (1995) Fuzzy integral in multicriteria decision making. Fuzzy Sets Syst 69(3):279–298

    Article  Google Scholar 

  13. Grabisch M (1996) The application of fuzzy integrals in multicriteria decision making. Eur J Oper Res 89:445–456

    Article  Google Scholar 

  14. Gritsevskyi A, Nakicenovic N (2000) Modeling uncertainty of induced technological change. Energy Policy 28(13):907–921

    Article  Google Scholar 

  15. Grubler A, Nakicenovic N (2001) Identifying dangers in an uncertain climate. Nature 412(6842):15

    Article  Google Scholar 

  16. Hayes B (2003) A lucid interval. Am Sci 91(6):484–488

    Article  Google Scholar 

  17. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press

  18. IPCC (2000) Special report on emissions scenario. IPCC, Geneva

  19. Knutti R, Stocker TF, Joos F, Plattner GK (2002) Constraints on radiative forcing and future climate change from observations and climate model ensembles. Nature 416(6882):719–723

    Article  Google Scholar 

  20. Kriegler E (2005) Imprecise probability analysis for integrated assessment of climate change. PhD Thesis, University of Postdam

  21. Kriegler E, Held H (2005) Utilizing belief functions for the estimation of future climate change. Int J Approx Reason 39(2–3):185–209

    Article  Google Scholar 

  22. Kriegler E, Held H, Bruckner T (2006) Climate protection strategies under ambiguity about catastrophic consequences. In: Kropp J, Scheffran J (eds) Decision making and risk management in sustainability science. Nova Science Publishers, New York

    Google Scholar 

  23. Lempert RJ, Schlesinger ME (2000) Robust strategies for abating climate change. Clim Change 45(3–4):387–401

    Article  Google Scholar 

  24. Lempert RJ, Schlesinger ME (2001) Climate-change strategy needs to be robust. Nature 412:375

    Article  Google Scholar 

  25. Lempert RJ, Popper SW, Bankes SC (2003) Shaping the next one hundred years: new methods for quantitative, long-term policy analysis. RAND, Santa Monica, CA

    Google Scholar 

  26. Levi I (1974) On indeterminate probabilities. J Philos 71:391–418

    Article  Google Scholar 

  27. Lindley DV (1982) Scoring rules and the inevitability of probability. Int Stat Rev 50:1–26

    Article  Google Scholar 

  28. Lindley DV (1990) Making decisions. Wiley, London

    Google Scholar 

  29. Lou WB, Caselton W (1997) Using Dempster–Shafer theory to represent climate change uncertainties. J Environ Manag 49:73–93

    Article  Google Scholar 

  30. Manne AS, Richels RG (1994) The costs of stabilizing global Co2 emissions: a probabilistic model based on expert judgments. Energy J 15(1):31

    Google Scholar 

  31. Marichal JL (2000) An axiomatic approach of the discrete choquet integral as a tool to aggregate interacting criteria. IEEE Trans Fuzzy Syst 8(6):800–807

    Article  Google Scholar 

  32. Merkhoffer MW (1987) Quantifying judgmental uncertainty: methodology, experiences and insights. IEEE Trans Syst Man Cybern 17:741–752

    Google Scholar 

  33. Moore RE (1966) Interval analysis. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  34. Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MJ, Collins M (2004) Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430(7001):768–772

    Article  Google Scholar 

  35. New M, Hulme M (2000) Representing uncertainty in climate change scenarios: a Monte Carlo approach. Integrated Assessment 1:203–213

    Article  Google Scholar 

  36. Pittock AB, Jones RN, Mitchell CD (2001) Probabilities will help us plan for climate change—without estimates, engineers and planners will have to delay decisions or take a gamble. Nature 413(6853):249

    Article  Google Scholar 

  37. Prinn R, Jacoby H, Sokolov A, Wang C, Xiao X, Yang Z, Eckhaus R, Stone P, Ellerman D, Melillo J, Fitzmaurice J, Kicklighter D, Holian G, Liu Y (1999) Integrated global system model for climate policy assessment: feedbacks and sensitivity studies. Clim Change 41(3–4):469–546

    Article  Google Scholar 

  38. Reilly J, Stone PH, Forest CE, Webster MD, Jacoby HD, Prinn RG (2001) Climate change—uncertainty and climate change assessments. Science 293(5529):430–433

    Article  Google Scholar 

  39. Rotmans J, Van Asselt MBA (2001) Uncertainty in integrated assessment modelling: a labyrinthic path. Integrated Assessment 2:43–55

    Article  Google Scholar 

  40. Savage LJ (1954) The foundations of statistics. Wiley, New York

    Google Scholar 

  41. Scherm H (2000) Simulating uncertainty in climate–pest models with fuzzy numbers. Environ Pollut 108(3):373–379

    Article  Google Scholar 

  42. Schmeidler D (1989) Subjective probability and expected utility without additivity. Econometrica 57:571–587

    Article  Google Scholar 

  43. Schneider SH (2001) What is ‘dangerous’ climate change? Nature 411(6833):17–19

    Article  Google Scholar 

  44. Schneider SH (2002) Can we estimate the likelihood of climatic changes at 2100? Clim Change 52(4):441–451

    Article  Google Scholar 

  45. Shackle GLS (1961) Decision, order and time in human affairs. Cambridge University Press, Cambridge

    Google Scholar 

  46. Shackley S, Young P, Parkinson S, Wynne B (1998) Uncertainty, complexity and concepts of good science in climate change modelling: are GCMS the best tools? Clim Change 38(2):159–205

    Article  Google Scholar 

  47. Simon H (1982) Models of bounded rationality. Behavioral economics and business organization. MIT Press, Cambridge

    Google Scholar 

  48. Stainforth DA, Aina T, Christensen C, Collins M, Faull N, Frame DJ, Kettleborough JA, Knight S, Martin A, Murphy JM, Piani C, Sexton D, Smith LA, Spicer RA, Thorpe AJ, Allen MR (2005) Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433(7024):403–406

    Article  Google Scholar 

  49. Stocker TF, Schmittner A (1997) Influence of Co2 emission rates on the stability of the thermohaline circulation. Nature 388(6645):862–865

    Article  Google Scholar 

  50. Stott PA, Kettleborough JA (2002) Origins and estimates of uncertainty in predictions of twenty-first century temperature rise. Nature 416(6882):723–726

    Article  Google Scholar 

  51. Titus JG, Narayanan V (1996) The risk of sea level rise. Clim Change 33(2):151–212

    Article  Google Scholar 

  52. Tol RSJ, De Vos AF (1998) A bayesian statistical analysis of the enhanced greenhouse effect. Clim Change 38(1):87–112

    Article  Google Scholar 

  53. Tonon F (2004) On the use of random set theory to bracket the results of Monte Carlo simulations. Reliab Comput 10(2):107–137

    Article  Google Scholar 

  54. Tschang FT, Dowlatabadi H (1995) A bayesian technique for refining the uncertainty in global energy model forecasts. Int J Forecast 11(1):43–61

    Article  Google Scholar 

  55. United Nations (1998) World Population Projections to 2150. United Nations Department of Economic and Social Affairs Population Division, New York

    Google Scholar 

  56. von Neumann J, Morgenstern O (1947) Theory of games and economic behaviour. Princeton University Press, Princeton NJ

    Google Scholar 

  57. Walley P (1991) Statistical reasoning with imprecise probabilities. Chapman and Hall, London

    Google Scholar 

  58. Walley P (2000) Towards a unified theory of imprecise probabilities. Int J Approx Reason 24(2–3):125–148

    Article  Google Scholar 

  59. Webster MD, Sokolov AP (2000) A methodology for quantifying uncertainty in climate projections. Clim Change 46(4):417–446

    Article  Google Scholar 

  60. Webster MD, Babiker M, Mayer M, Reilly JM, Harnisch J, Hyman R, Sarofim MC, Wang C (2002) Uncertainty in emissions projections for climate models. Atmos Environ 36(22):3659–3670

    Article  Google Scholar 

  61. Wigley TML (2003) Magicc/Scengen 4.1: technical manual

  62. Wigley TML, Raper SCB (2001) Interpretation of high projections for global-mean warming. Science 293(5529):451–454

    Article  Google Scholar 

  63. Wigley TML, Raper SCB (2002) Reasons for larger warming projections in the IPCC third assessment report. J Climate 15(20):2945–2952

    Article  Google Scholar 

  64. Williamson T (1994) Vaugeness. Routledge, London

    Google Scholar 

  65. Williamson RC, Downs T (1990) Probabilistic arithmetic I: Numerical methods for calculating convolutions and dependency bounds. Int J Approx Reason 4(2):89–158

    Article  Google Scholar 

  66. World Bank (1991) World development report 1991: the challenge of development. Oxford University Press, Oxford

    Google Scholar 

  67. Wright G, Ayton P (1994) Subjective probability. Wiley, Chichester

    Google Scholar 

  68. Yager RR (1986) Arithmetic and other operations on dempster–shafer structures. Int J Man–Mach Stud 25(4):357–366

    Article  Google Scholar 

  69. Young P, Parkinson S, Lees M (1996) Simplicity out of complexity in environmental modelling: Occam’s razor revisited. J Appl Stat 23(2–3):165–210

    Article  Google Scholar 

  70. Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning. Inf Sci 8:199–249

    Article  Google Scholar 

  71. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  Google Scholar 

  72. Zapert R, Gaertner PS, Filar JA (1998) Uncertainty propagation within an integrated model of climate change. Energy Econ 20(5–6):571–598

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jim Hall.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hall, J., Fu, G. & Lawry, J. Imprecise probabilities of climate change: aggregation of fuzzy scenarios and model uncertainties. Climatic Change 81, 265–281 (2007). https://doi.org/10.1007/s10584-006-9175-6

Download citation

Keywords

  • Emission Scenario
  • Climate Sensitivity
  • Cumulative Probability Distribution
  • Imprecise Probability
  • Global Mean Temperature