Skip to main content

Detecting potential changes in the meridional overturning circulation at 26˚N in the Atlantic

Abstract

We analyze the ability of an oceanic monitoring array to detect potential changes in the North Atlantic meridional overturning circulation (MOC). The observing array is ‘deployed’ into a numerical model (ECHAM5/MPI-OM), and simulates the measurements of density and wind stress at 26°N in the Atlantic. The simulated array mimics the continuous monitoring system deployed in the framework of the UK Rapid Climate Change program. We analyze a set of three realizations of a climate change scenario (IPCC A1B), in which – within the considered time-horizon of 200 years – the MOC weakens, but does not collapse. For the detection analysis, we assume that the natural variability of the MOC is known from an independent source, the control run. Our detection approach accounts for the effects of observation errors, infrequent observations, autocorrelated internal variability, and uncertainty in the initial conditions. Continuous observation with the simulated array for approximately 60 years yields a statistically significant (p < 0.05) detection with 95 percent reliability assuming a random observation error of 1 Sv (1 Sv = 106 m3 s−1). Observing continuously with an observation error of 3 Sv yields a detection time of about 90 years (with 95 percent reliability). Repeated hydrographic transects every 5 years/ 20 years result in a detection time of about 90 years/120 years, with 95 percent reliability and an assumed observation error of 3 Sv. An observation error of 3 Sv (one standard deviation) is a plausible estimate of the observation error associated with the RAPID UK 26°N array.

References

  1. Adams R, Brown M, Colgan C, Flemming N, Kite-Powell H, McCarl B, Mjelde J, Solow A, Teisberg T, Weiher R (2000) The economics of sustained ocean observations: benefits and rationale for public funding. Technical report, A joint publication of the National Oceanic and Atmospheric Administration and the Office of Naval Research

  2. Alley RB, Marotzke J, Nordhaus WD, Overpeck JT, Peteet DM, Pielke Jr. RA, Pierrehumbert RT, Rhines PB, Stocker TF, Talley LD, Wallace JM (2003) Abrupt climate change. Science 299:2005–2010

    Article  Google Scholar 

  3. Baehr J, Hirschi J, Beismann J, Marotzke J (2004) Monitoring the meridional overturning circulation in the North Atlantic: a model-based array design study. Journal of Marine Research 62 (3):283–312

    Article  Google Scholar 

  4. Banks H, Wood RA (2002) Where to look for anthropogenic climate change in the ocean? Journal of Climate 15:879–891

    Article  Google Scholar 

  5. Baringer MO, Larsen JC (2001) Sixteen years of Florida current transport at 27°N. Geophysical Research Letters 28:3179–3182

    Article  Google Scholar 

  6. Bryden HL, Griffiths MJ, Lavin AM, Millard RC, Parrilla G, Smethie WM (1996) Decadal changes in water mass characteristics at 24°N in the subtropical North Atlantic. Journal of Climate 9:3162–3186

    Article  Google Scholar 

  7. Bryden HL, Longworth HR, Cunningham SA (2005) Slowing of the Atlantic meridional overturning circulation at 25^N. Nature 438:655–657

    Article  Google Scholar 

  8. Bryden HL, McDonagh EL, King BA (2003) Changes in ocean water mass properties: oscillations or trends? Science 300: 2086–2088

    Article  Google Scholar 

  9. Dansgaard W, Johnsen SJ, Clausen HB, Dahl-Jensen D, Gundestrup NS, Hammer CU, Hvidberg CS, Steffensen JP, Sveinbjoernsdottir AE, Jouzel J, Bond G (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364:218–220

    Article  Google Scholar 

  10. Ganachaud A (2003) Error budget of inverse box models: the North Atlantic. Journal of Atmospheric and Oceanic Technology 20: 1641–1655

    Article  Google Scholar 

  11. Ganachaud A, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408: 453–457

    Article  Google Scholar 

  12. Gregory JM, Dixon KW, Stouffer RJ, Weaver AJ, Diesschaert E, Eby M, Fichefet T, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Sokolov AP, Thorpe RB (2005) A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophysical Research Letters 32: L12703, doi: 10.1029/2005GL023209

  13. Hall MM, Bryden HL (1982) Direct estimates and mechanisms of ocean heat transport. Deep Sea Research 29: No. 3A, 339–359

    Google Scholar 

  14. Hasselmann K (1998) Conventional and Bayesian approach to climate-change detection and attribution. Quarterly Journal of the Royal Meteorological Society 124(552):2541–2565

    Article  Google Scholar 

  15. Heinrich H (1988) Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years. Quaternary Research 29 (2):142–152

    Article  Google Scholar 

  16. Hirschi J, Baehr J, Marotzke J, Stark J, Cunningham S, Beismann JO (2003) A monitoring design for the Atlantic meridional overturning circulation. Geophysical Research Letters 30(7): 1413, doi: 10.1029/2002GL016776

  17. Hirschi J, Marotzke J (2006) Reconstructing the meridional overturning circulation from boundary densities and zonal wind stress. Submitted to Journal of Physical Oceanography

  18. Hu A, Meehl GA, Han W (2004) Detecting thermohaline circulation changes from ocean properties in a coupled model. Geophysical Research Letters 31: L13204, doi: 10.1029/2004GL020218

  19. Jayne SR, Marotzke J (2001) The dynamics of ocean heat transport variability. Reviews of Geophysics 39: 385–411

    Article  Google Scholar 

  20. Jungclaus JH, Botzet M, Haak H, Luo J, Latif M, Marotzke J, Mikolajewicz U, Roeckner E (2006) Ocean circulation and tropical variability in the coupled model ECHAM/MPI-OM. Journal of Climate, Accepted

  21. Keigwin LD, Boyle EA (2000) Detecting Holocene changes in thermohaline circulation. Proceedings of the National Academy of Sciences of the United States of America 97(4):1343–1346

  22. Keller K, Bolker BM, Bradford DF (2004) Uncertain climate thresholds and optimal economic growth. Journal of Environmental Economics and Management 48: 723–741

    Article  Google Scholar 

  23. Keller K, Deutsch C, Hall MG, Bradford DF (2006) Early detection of changes in the North Atlantic meridional overturning circulation: implications for the design of ocean observation systems. Journal of Climate, in the press

  24. Keller K, Yohe G, Schlesinger M (2007) Managing the risks of climate thresholds: uncertainties and information needs. Climatic Change, DOI 10.1007/s10584-006-9114-6, this issue

  25. Köhl A (2005) Anomalies of meridional overturning: mechanisms in the North Atlantic. Journal of Physical Oceanography 35:1455–1472

    Article  Google Scholar 

  26. Larsen JC (1985) Florida Current volume transports from voltage measurements. Science 277:302–304

    Article  Google Scholar 

  27. Larsen JC (1992) Transport and heat flux of the Florida current at 27°N derived from cross-stream voltages and profiling data: theory and observations. Philosophical Transactions of the Royal Society, London A 338:169–236

    Article  Google Scholar 

  28. Latif M, Roeckner E, Botzet M, Esch M, Haak H, Jungclaus J, Legutke S, Marsland S, Mikolajewicz U, Mitchell J (2004) Reconstructing, monitoring and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. Journal of Climate 17:1605–1614

    Article  Google Scholar 

  29. Lee T, Marotzke J (1997) Inferring meridional mass and heat transports of the Indian Ocean by fitting a general circulation model to climatological data. Journal of Geophysical Research 102 (C5):10,585–10,602

    Article  Google Scholar 

  30. Lempert R (2002) A new decision sciences for complex systems. Proceedings of the National Academy of Sciences of the United States of America 99:7309–7313

  31. Longworth HR, Bryden HL, Duncan LM (2005) Historical estimates of Atlantic meridional overturning circulation. Second RAPID Annual Science Meeting and Workshops; http://www.soc.soton.ac.uk/rapid/sci/AnnualMeeting2005.php

  32. Macdonald AM (1998) The global ocean circulation: a hydrographic estimate and regional analysis. Progress in Oceanography 41:281–382

    Article  Google Scholar 

  33. Manabe S, Stouffer RJ (1994) Multiple-century response of a coupled ocean-atmosphere model to an increase of atmospheric carbon dioxide. Journal of Climate 7:5–23

    Article  Google Scholar 

  34. Marotzke J (1997) Boundary mixing and the dynamics of three-dimensional thermohaline circulations. Journal of Physical Oceanography 27:1713–1728

    Article  Google Scholar 

  35. Marotzke J (2000) Abrupt climate change and thermohaline circulation: mechanisms and predictability. Proceedings of the National Academy of Sciences of the United States of America 97:1347–1350

  36. Marotzke J, Cunningham SA, Bryden HL (2002) Monitoring the Atlantic meridional overturning circulation at 26.5°N. Proposal Accepted by the Natural Environment Research Council (UK), Available at: http://www.noc.soton.ac.uk/rapidmoc/

  37. Marotzke J, Giering R, Zhang KQ, Stammer D, Hill C, Lee T (1999) Construction of the adjoint MIT ocean general circulation model and application to Atlantic heat transport sensitivity. Journal of Geophysical Research 104:29,529–29,547

    Article  Google Scholar 

  38. Marotzke J, Klinger BA (2000) The dynamics of equatorially asymmetric thermohaline circulations. Journal of Physical Oceanography 30:955–970

    Article  Google Scholar 

  39. Marsh R, de Cuevas BA, Coward AC, Bryden HL, Alvarez M (2005) Thermohaline circulation at three key section in the North Atlantic over 1985–2002. Geophysical Research Letters 32, doi:10.1029/2004GL022281

  40. Marsland SJ, Haak H, Jungclaus JH, Latif M, Röske F (2003) The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modelling 5:91–127

    Article  Google Scholar 

  41. McManus JF, Francois R, Gheradi J, Keigwin LD, Brown-Leger S (2004) Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428:834–837

    Article  Google Scholar 

  42. Mikolajewicz U, Voss R (2000) The role of individual air-sea flux components in CO2-induced changes of the ocean’s circulation and climate. Climate Dynamics 16:627–642

    Article  Google Scholar 

  43. Nakicenovic N, Swart R (2000) Special report on emission scenarios. Technical report, Intergovernmental Panel on Climate Change (IPCC)

  44. National Research Council (2002) Abrupt climate change: inevitable surprises. Alley RB, Marotzke J, Nordhaus WD, Overpeck JT, Peteet DM, Pielke Jr. RA, Pierrehumbert RT, Rhines PB, Stocker TF, Talley LD, Wallace JM, National Academy Press, Washington, D.C

  45. Nordhaus W, Popp D (1997) What is the value of scientific knowledge? An application to global warming using the PRICE model. Energy Journal 1 (18):1–45

    Google Scholar 

  46. Peck SC, Teisberg TJ (1996) Uncertainty and the values of information with stochastic losses from global warming. Risk Analysis 16(2):227–235

    Article  Google Scholar 

  47. Roeckner E, Bäauml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzinie E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5, part I: model description. Technical Report 349, Max Planck Institute for Meteorology

  48. Santer BD, Mikolajewicz U, Brüggemann W, Cubasch U, Hasselmann K, Höck H, Maier-Reimer E, Wigley TL (1995) Ocean variability and its influence on the detectability of greenhouse warming signals. Journal of Geophysical Research 100 (C6):10693–10725

    Article  Google Scholar 

  49. Schiermeier Q (2004) Gulf Stream probed for early warnings of system failure. Nature 427:769

    Google Scholar 

  50. Stammer D, Wunsch C, Giering R, Eckert C, Heimbach P, Marotzke J, Adcroft A, Hill CN, Marshall J (2003) Volume, heat and freshwater transports of the global ocean circulation 1993–2000, estimated from a general circulation model constrained by World Ocean Circulation Experiment (WOCE) data. Journal of Geophysical Research 108(C1):3007–3030

    Google Scholar 

  51. Stocker TF, Schmittner A (1997) Influence of CO2 emission rates on the stability of the thermohaline circulation. Nature 388:862–865

    Article  Google Scholar 

  52. Talley L (2003) Shallow, intermediate, and deep overturning components of the global heat budget. Journal of Physical Oceanography 33:530–560

    Article  Google Scholar 

  53. Thorpe RB, Gregory JM, Johns TC, Wood RA, Mitchell JFB (2001) Mechanisms determining the Atlantic thermohaline circulation response to greenhouse gas forcing in a non-flux-adjusted coupled climate model. Journal of Climate 14:3102–3116

    Article  Google Scholar 

  54. Trenberth KE, Solomon A (1994) The global heat balance: heat transport in the atmosphere and ocean. Climate Dynamics 10(3):107–134

    Article  Google Scholar 

  55. Vellinga M, Wood RA (2002) Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Climatic Change 54:251–267

    Article  Google Scholar 

  56. Vellinga M, Wood RA (2004) Timely detection of anthropogenic change in the Atlantic meridional overturning circulation. Geophysical Research Letters 31:L14203, doi: 10.1029/2004GL020306

  57. Wunsch C, Heimbach P (2006) Estimated decadal changes in the North Atlantic meridional overturning circulation and heat flux 1993–2004. Journal of Physical Oceanography, in the press

  58. Yohe G (1991) Uncertainty, climate change and the economic value of information – an economic methodology for evaluating the timing of relative efficacy of alternative response to climate change with application to protecting developed property from greenhouse induced sea-level rise. Policy Sciences 24(3):245–269

    Google Scholar 

  59. Yohe G (1996) Exercises in hedging against extreme consequences of global change and the expected value of information. Global Environmental Change 6:87–101

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Johanna Baehr.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Baehr, J., Keller, K. & Marotzke, J. Detecting potential changes in the meridional overturning circulation at 26˚N in the Atlantic. Climatic Change 91, 11–27 (2008). https://doi.org/10.1007/s10584-006-9153-z

Download citation

Keywords

  • Observation Error
  • Meridional Heat Transport
  • Atlantic Thermohaline Circulation
  • Springer Climatic Change
  • Unforced System