Skip to main content


Log in

Climate Strategy with Co2 Capture from the Air

  • Published:
Climatic Change Aims and scope Submit manuscript


It is physically possible to capture CO2 directly from the air and immobilize it in geological structures. Air capture differs from conventional mitigation in three key aspects. First, it removes emissions from any part of the economy with equal ease or difficulty, so its cost provides an absolute cap on the cost of mitigation. Second, it permits reduction in concentrations faster than the natural carbon cycle: the effects of irreversibility are thus partly alleviated. Third, because it is weakly coupled to existing energy infrastructure, air capture may offer stronger economies of scale and smaller adjustment costs than the more conventional mitigation technologies.

We assess the ultimate physical limits on the amount of energy and land required for air capture and describe two systems that might achieve air capture at prices under 200 and 500 $/tC using current technology.

Like geoengineering, air capture limits the cost of a worst-case climate scenario. In an optimal sequential decision framework with uncertainty, existence of air capture decreases the need for near-term precautionary abatement. The long-term effect is the opposite; assuming that marginal costs of mitigation decrease with time while marginal climate change damages increase, then air capture increases long-run abatement. Air capture produces an environmental Kuznets curve, in which concentrations are returned to preindustrial levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  • Anderson, D. and Cavendish, W.: 2001, ‘Dynamic simulation and environmental policy analysis: Beyond comparative statistics and the environmental Kuznets curve,’ Oxford Economic Papers 53(4), 721–746.

    Google Scholar 

  • Audus, H.: 2004, ‘Climate change mitigation by biomass gasification combined with CO2 capture and storage,’ in Proceedings of 7th International Conference on Greenhouse Gas Control Technologies, Volume 1: Peer-Reviewed Papers and Plenary Presentations, Cheltenham, UK, IEA Greenhouse Gas Programme.

  • Borghesi, S.: 1999, The environmental Kuznets curve: A survey of the literature. Technical Report Nota do lavoro 85.99, Fondazione Eni Enrico Mattei, URL

  • Elliott, S., Lackner, K. S., Ziock, H. J., Dubey, M. K., Hanson, H. P., Barr, S., Ciszkowski, N. A., and Blake, D. R.: 2001, ‘Compensation of atmospheric CO2 buildup through engineered chemical sinkage,’ Geophysical Research Letters 28(7), 1235–1238.

    Article  Google Scholar 

  • Flanagan, P.: 2004, Email conversation. Associated with Groupe Laperrire and Verreault.

  • Greenwood, K. and Pearce, M.: 1953, ‘The removal of carbon dioxide from atmospheric air by scrubbing with caustic soda in packed towers,’ Transactions of the Institution of Chemical Engineers 31, 201–207.

    Google Scholar 

  • Grübler, A., Nakićenović, N., and Victor, D. G.: 1999, ‘Dynamics of energy technology and global change,’ Energy Policy 27, 247–280.

    Article  Google Scholar 

  • Ha-Duong, M., Grubb, M. J., and Hourcade, J.-C.: 1997, ‘Influence of socioeconomic inertia and uncertainty on optimal CO2-emission abatement,’ Nature 390, 270–274. URL file://HaDuong.ea-1997-InfluenceInertiaUncertaintyAbatement.pdf.

    Google Scholar 

  • Herzog, H., Caldeira, K., and Reilly, J.: 2003, ‘An issue of permanence: Assessing the effectiveness of temporary carbon storage,’ Climatic Change 59.

  • Hoftyzer, P. J. and van Krevelen, D. W.: 1954, ‘Applicability of the results of small-scale experiments to the design of technical apparatus for gas absorption,’ Transactions of the Institution of Chemical Engineers, Supplement (Proceedings of the Symposium on Gas Absorption 32, S60–S67.

  • IPCC: 1997, Stabilisation of Atmospheric Greenhouse Gases: Physical, Biological and Socio-economic Implications (IPCC Technical paper III). UNEP/WMO. Working Group I.

  • IPCC: 2001, Climate Change 2001: Mitigation. Cambridge University Press.

  • Johnston, N. A. C., Blake, D. R., Rowland, F. S., Elliott, S., Lackner, K. S., Ziock, H. J., Dubey, M. K., Hanson, H. P., and Barr, S.: 2003, ‘Chemical transport modeling of potential atmospheric CO2 sinks,’ Energy Conversion and Management 44(5), 683–691.

    Article  Google Scholar 

  • Keith, D. W.: 2000, ‘Geoengineering the climate: History and prospect,’ Annual Review of Energy and the Environment 25, 245–284.

    Article  Google Scholar 

  • Keith, D. W.: 2001, ‘Sinks, energy crops, and land use: Coherent climate policy demands an integrated analysis of biomass,’ Climatic Change 49, 1–10.

    Article  Google Scholar 

  • Keith, D. W. and Farrell, A. E.: 2003, ‘Rethinking hydrogen cars,’ Science 315–316.

  • Keller, K., Yang, Z., and Hall, M.: 2003, Carbon dioxide sequestration: When and how much? Working Paper Series 84, Princeton University, Center for Economic Policy Studies, In revision for Climate Change.

  • McFarland, J. R., Reilly, J. M., and Herzog, H.J.: 2004, ‘Representing energy technologies in top-down economic models using bottom-up information,’ Energy Economics 26, 685–707.

    Article  Google Scholar 

  • Metzger, R. A. and Benford, G.: 2001, ‘Sequestering of atmospheric carbon through permanent disposal of crop residue,’ Climatic Change 49, 11–19.

    Article  Google Scholar 

  • M'ollerstena, K., Yana, J., and Moreirab, J. R.: 2003, ‘Potential market niches for biomass energy with CO2 capture and storage – opportunities for energy supply with negative CO2 emissions,’ Biomass and Bioenergy 25, 273–285.

    Article  Google Scholar 

  • National Academy of Science NAS: 2002, Abrupt climate change: Inevitable surprises. National Academy Press, Washington, D.C.. ISBN 0-309-07434-7.

    Google Scholar 

  • Nordhaus, W. D.: 2002, ‘Modeling induced innovation in climate-change policy,’ in Grübler, A., Nakicenovic, N., and Nordhaus, W. D. (eds.), Technological Change and the Environment (Chap. 8), Resources for the Future, pp. 182–209.

  • Obersteiner, M., Azar, C., Kauppi, P., Möllersten, K., Moreira, J., Nilsson, S., Read, P., Riahi, K., Schlamadinger, B., Yamagata, Y., Yan, J., and van Ypersele, J.-P.: 2001, ‘Managing climate risk,’ Science 294(5543), 786–787.

    Article  Google Scholar 

  • Rao, A. B.: 2004, Personal communication.

  • Rao, A. B. and Rubin, E. S.: 2002, ‘A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control,’ Environmental Science and Technology 36(20), 4467–4475.

    Article  Google Scholar 

  • Reimer, P., Eliassed, B. et al. (eds.): 1999, Greenhouse Gas control Technologies: Proceedings of the 4th International Conference, Interlaken, Switzerland, Pergamon.

  • Rhodes, J. S. and Keith, D. W.: 2005, ‘Engineering-economic analysis of biomass IGCC with carbon capture and storage,’ Biomass and Bioenergy 29, 440–450.

    Google Scholar 

  • Stolaroff, J. K., Lowry, G. V., and Keith, D. W.: 2005, ‘Using CaO- and MgO-rich industrial waste streams for carbon sequestration,’ Energy Conversion and Management 46(5), 687–699.

    Article  Google Scholar 

  • Weast, R. C. (ed.): 2003, CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Willams, D., Durie, B., McMullan, P., Paulson, C., and Smith, A. (eds.): 2001, Greenhouse Gas Control Technologies: Proceedings of the 5th International Conference on Greenhouse Gas Control Technologies, Collingwood, Australia. CSIRO Publishing.

  • Zeman, F. S. and Lackner, K. S.: 2004, ‘Capturing carbon dioxide directly from the atmosphere,’ World Resources Review 16, 62–68.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to David W. Keith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keith, D.W., Ha-Duong, M. & Stolaroff, J.K. Climate Strategy with Co2 Capture from the Air. Climatic Change 74, 17–45 (2006).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: