Climatic Change

, Volume 76, Issue 1–2, pp 121–148 | Cite as

The Warming of Lake Tahoe

  • Robert CoatsEmail author
  • Joaquim Perez-Losada
  • Geoffrey Schladow
  • Robert Richards
  • Charles Goldman


We investigated the effects of climate variability on the thermal structure of Lake Tahoe, California-Nevada, 1970–2002, and with principal components analysis and step-wise multiple regression, related the volume-weighed average lake temperature to trends in climate. We then used a 1-dimensional hydrodynamic model to show that the observed trends in the climatic forcing variables can reasonably explain the observed changes in the lake. Between 1970 and 2002, the volume-weighted mean temperature of the lake increased at an average rate of 0.015 C yr−1. Trends in the climatic drivers include 1) upward trends in maximum and minimum daily air temperature at Tahoe City; and 2) a slight upward trend in downward long-wave radiation. Changes in the thermal structure of the lake include 1) a long-term warming trend, with the highest rates near the surface and at 400 m; 2) an increase in the resistance of the lake to mixing and stratification, as measured by the Schmidt Stability and Birge Work; 3) a trend toward decreasing depth of the October thermocline. The long-term changes in the thermal structure of Lake Tahoe may interact with and exacerbate the well-documented trends in the lake's clarity and primary productivity.


Short Wave Radiation Longwave Radiation Thermocline Depth Multivariate ENSO Index Downward Longwave Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambrosetti, W. and Barbanti, L.: 1999, ‘Deep water warming in lakes: An indicator of climatic change’, J. Limnol. 58, 1–9.Google Scholar
  2. Anderson, M. L., Chen, Z.-Q., Kavvas, M. L., and Feldman, A.: 2002, ‘Coupling HEC-HMS with atmospheric models for prediction of watershed runoff’, J. Hydrol. Eng. 7, 312–318.CrossRefGoogle Scholar
  3. Arhonditsis, G. B., Brett, M. T., DeGasperi, C. L., and Schindler, D. E.: 2004, ‘Effects of climatic variability on the thermal properties of Lake Washington’, Limnol. Oceanogr. 49, 256-270.CrossRefGoogle Scholar
  4. Chang, C. C. Y., Kuwabara, J. S., and Pasilis, S. P.: 1992, ‘Phosphate and iron limitation of phytoplankton biomass in Lake Tahoe’, Can. J. Fish. Aquatic Sci. 49, 1206–1215.Google Scholar
  5. Dettinger, M. D. and Cayan, D. R.: 1995, ‘Large-scale atmospheric forcing of recent trends toward early snowmelt runoff in California’, J. Climate 8, 606–623.CrossRefGoogle Scholar
  6. Dettinger, M. D., Cayan, D. R., Meyer, M. K., and Jeton, A. E.: 2004, ‘Simulated hydrologic responses to climate variations and change in the Merced, Carson, and American River basins, Sierra Nevada, California, 1900–2009’, Climate Change 62, 283–317.CrossRefGoogle Scholar
  7. Easterling, D. R., Horton, B., Jones, P. D., Peterson, T. C., Karl, T. R., Parker, D. E., Salinger, M. J., Razuvayev, V., Plummer, N., Jamason, P., and Folland, C. K.: 1997, ‘Maximum and minimum temperature trends for the globe’, Science 227, 364–367.CrossRefGoogle Scholar
  8. Elo, A., Huttula, T., Peltonen, A., and Virta, J.: 1998, ‘The effects of climate change on the temperature conditions of lakes’, Boreal Environ. Res. 3, 137–150.Google Scholar
  9. Fee, E. J., Heckey, R. E., Kasian, S. E. M., and Cruikshank, D. R.: 1996, ‘Effects of lake size, water clarity, and climatic variability on the mixing depths in canadian shield lakes’, Limnol. Oceanogr. 41, 912–920.CrossRefGoogle Scholar
  10. Gardner, J. V., Larry, A. M., and Clarke, J. H.: 1998, ‘The Bathymetry of Lake Tahoe, California-Nevada’, U.S. Geological Survey Open-File Report 98–509.Google Scholar
  11. Goldman, C. R., Jassby, A., and Powell, T.: 1989, ‘Interannual fluctuations in primary production: Meteorological forcing at two subalpine lakes’, Limnol. Oceanogr. 34, 310–323.Google Scholar
  12. Goldman, C. R., Jassby, A. D., and Hackley, S. H.: 1993, ‘Decadal, interannual, and seasonal variability in enrichment bioassays at Lake Tahoe, California-Nevada, USA’, Can. J. Fish. Aquat. Sci. 50, 1489–1496.CrossRefGoogle Scholar
  13. Grell, G., Dudhia, J., and Stauffer, D.: 1994, A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5), National Center for Atmospheric Research, Boulder, CO.Google Scholar
  14. Hamilton, D. P. and Schladow, S. G.: 1997, ‘Prediction of Water Quality in Lakes and Reservoirs. Part I. Model Description’, Ecol. Model. 96, 91–110.CrossRefGoogle Scholar
  15. Hansen, J., Nazarenko, L., Ruedy, R., Sato, M., Willis, J., Del Genio, A., Koch, D., Lacis, A., Lo, K., Menon, S., Novakov, T., Perlwitz, J., Russell, G., Schmidt, G. and Tausnev, N.: 2005, ‘Earth's energy imbalance: Confirmation and implications’, Science 308, 1431–1435.CrossRefPubMedGoogle Scholar
  16. Hansen, J., Ruedy, R., Sato, M., and Reynolds, R.: 1996, ‘Global surface air temperature in 1995: Return to pre-Pinatubo level’, Geophys. Res. Lett. 23, 1165–1168.CrossRefGoogle Scholar
  17. Helsel, D. R. and Hirsch, R. M.: 1995, Statistical Methods in Water Resources. Studies in Environmental Science 49, Elsevier, New York. 529 p.Google Scholar
  18. Henyey, T. L. and Lee, T. C.: 1976, ‘Heat flow in Lake Tahoe, California-Nevada, and the Sierra Nevada-basin and range transition’, Geol. Soc. Am. Bull. 87, 1179–1187.CrossRefGoogle Scholar
  19. Hutchinson, G. E.: 1957, ‘A Treatise on Limnology. Vol 1. Geography, Physics and Chemistry’, Wiley International, N.Y.Google Scholar
  20. Idso, S. B.: 1973, ‘On the concept of lake stability’, Limnol. Oceanogr. 18, 681–683.Google Scholar
  21. Imberger, J. and Patterson, J. C.: 1990, ‘Physical Limnology’, Advances in Applied Mechanics 27, 303–475.Google Scholar
  22. Imboden, D. M., Weiss, R. F., Craig, H., Michel, R. L., and Goldman, C. R.: 1977, ‘Lake Tahoe geochemical study. 1. Lake chemistry and tritium mixing study’, Limnol. Oceanogr. 22, 1039–1051.Google Scholar
  23. Jassby, A. D., Goldman, C. R., and Powell, T. M.: 1992, ‘Trend, seasonality, cycle, and irregular fluctuations in primary productivity at Lake Tahoe, California-Nevada, USA’, Hydrobiol. 246, 195–203.CrossRefGoogle Scholar
  24. Jassby, A. D., Goldman, C. R., and Reuter, J. E.: 1995, ‘Long-Term change in Lake Tahoe (California-Nevada, U.S.A.) and its relation to atmospheric deposition of algal nutrients’, Arch. Hydrobiol. 135, 1–21.Google Scholar
  25. Jassby, A. D., Goldman, C. R., Reuter, J. E., and Richards, R. C.: 1999, ‘Origins and scale dependence of temporal variability in the transparency of Lake Tahoe, California-Nevada’, Limnol. Oceanogr. 44, 282–294.CrossRefGoogle Scholar
  26. Jassby, A., Reuter, J., and Goldman, C. R.: 2003, ‘Determining Long-Term Water-Quality change in the presence of climate variability: Lake Tahoe (U.S.A.)’, Can. J. Fish. Aquat. Sci. 60, 1452-1461.CrossRefGoogle Scholar
  27. Jellinson, R., Miller, L. G., Melack, J. M., and Dana, G. L.: 1993, ‘Meromixsis in hypersaline Mono Lake, California. 2. Nitrogen fluxes’, Limnol. Oceanogr. 38, 1020–1039.CrossRefGoogle Scholar
  28. Jones, P. D. and Moberg, A.: 2003, ‘Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001’, J. Clim. 16, 206–223.CrossRefGoogle Scholar
  29. Kerr, R. A.: 1982, ‘El Chichón forebodes climate change’, Science 217, 1023.CrossRefGoogle Scholar
  30. Kerr, R. A.: 1983, ‘El Chichón climate effect estimated’, Science 219, 157.CrossRefGoogle Scholar
  31. King, J. R., Shuter, B. J., and Zimmerman, A. P.: 1997, ‘The response of the thermal stratification of South Bay (Lake Huron) to climatic variability’, Can. J. Fish. Aquat. Sci. 54, 1873–1882CrossRefGoogle Scholar
  32. Kukla, G. and Karl, T. R.: 1993, ‘Nighttime warming and the greenhouse effect’, Environ. Sci. Tech. 27, 1468–1474.CrossRefGoogle Scholar
  33. Levitus, S., Antonov, J. I., Boyer, T. P., and Stephens, C.: 2000, ‘Warming of the world ocean’, Science 287, 2225–2229.CrossRefGoogle Scholar
  34. Livingstone, D. M.: 1993, ‘Temporal structure in the deep-water temperature of four swiss lakes: A short-term climatic change indicator?’, Verh. Internat. Verein. Limnol. 25, 75–81.Google Scholar
  35. Livingstone, D. M.: 1997, ‘An example of the simultaneous occurrence of climate-driven “Sawtooth” deep-water warming/cooling episodes in several Swiss lakes’, Verh. Internat. Verein. Limnol. 26, 822–828.Google Scholar
  36. Livingstone, D. M.: 2003, ‘Impact of secular climate change on the thermal structure of a large temperate central European lake’, Clim. Change 57, 205–225.CrossRefGoogle Scholar
  37. Mantua, N. J., Hare, S. R. Zhang, Y., Wallace, J. M., and Francis, R. C.: 1997, ‘A Pacific interdecadal climate oscillation with impacts on salmon production’, Bull. Am. Meteorological Soc. 78, 1069–1079.CrossRefGoogle Scholar
  38. Mazumder, A. and Taylor, W. D.: 1994, ‘Thermal structure of lakes varying in size and water clarity’, Limnol Oceanogr. 39, 968–976.CrossRefGoogle Scholar
  39. McCord, S. A. and Schladow, S. G.: 1998, ‘Numerical simulations of degassing scenarios for CO2-rich Lake Nyos, Cameroon’, J. Geophys. Res. B: Solid Earth 103(B6), 12355–12364.CrossRefGoogle Scholar
  40. McCormick, M. J.: 1990, ‘Potential changes in thermal structure and cycle of Lake Michigan due to global warming’, Trans. Am. Fish. Soc. 119, 183–194.CrossRefGoogle Scholar
  41. Miller, L. G., Jellison, R., Oremland, R. S., and Culbertson, C. W.: 1993, ‘Meromixis in hypersaline Mono Lake, California. 3. Biogeochemical response to stratification and overturn’, Limnol. Oceanogr. 38, 1040–1051.CrossRefGoogle Scholar
  42. Paerl, H. W., Richards, R. C., Leonard, R. L., and Goldman, C. R.: 1975, ‘Seasonal nitrate cycling as evidence for complete vertical mixing in Lake Tahoe, California-Nevada’, Limnol. Oceanogr. 20, 1–8.CrossRefGoogle Scholar
  43. Peeters, F. and Livingstone, D. M.: 2002, ‘Modeling 50 years of historical temperature profiles in a large central European lake’, Limnol. Oceanogr. 47, 186–197.CrossRefGoogle Scholar
  44. Perez-Losada, J.: 2001, ‘A Deterministic Model for Lake Clarity: Application to Management of Lake Tahoe (California-Nevada)’, USA, Ph.D. Thesis, Universitat de Girona, Girona, Spain, 231 pp.Google Scholar
  45. Quayle, W. D., Peck, L. S., Peat, H., Ellis-Evans, J. C., and Harrigan, P. R.: 2002, ‘Extreme responses to climate change in Antarctic lakes’, Science 295, 645.CrossRefPubMedGoogle Scholar
  46. Richards, R. C., Goldman, C. R., Trantz, T. C., and Wickwire, R.: 1975, ‘Where have all the daphnia gone? The decline of a major cladoceran in Lake Tahoe, California-Nevada’, Verh. Internat. Verein. Limnol. 19, 835–842.Google Scholar
  47. Richards, R., Goldman, C., Byron, E., and Levitan, C.: 1991, ‘The mysids and lake trout of Lake Tahoe: A 25-year history of changes in the fertility, plankton, and fishery of an Alpine lake’, Am. Fish. Soc. Symp. 9, 30–38.Google Scholar
  48. Robertson, D. M. and Ragotzkie, R. A.: 1990, ‘Changes in the thermal structure of moderate to large sized lakes in response to changes in air temperature’, Aquatic Sciences 52, 360-380.CrossRefGoogle Scholar
  49. Schindler, D. W., Bayley, S. E., and Parker, B. R.: 1996, ‘The effect of climatic warming on the properties of boreal lakes and streams at the experimental lakes area, Northwestern Ontario’, Limnol. Oceanogr. 41, 1004–1017.CrossRefGoogle Scholar
  50. Stefan, H. G., Fang, X., and Hondzo, M.: 1998, ‘Simulated climate change effects on year-round water temperatures in temperate zone lakes’, Clim. Change 40, 547–576.CrossRefGoogle Scholar
  51. Stewart, I., Cayan, D., and Dettinger, M.: 2005, ‘Changes towards earlier streamflow timing across western North America’, Jour. Climate 18, 1136–1155.CrossRefGoogle Scholar
  52. Strub, P. T., Powell, T., and Goldman, C. R.: 1985, ‘Climatic forcing: Effects of El niño on a small, temperate lake’, Science 227, 55–57.CrossRefGoogle Scholar
  53. Strub, P. T. and Powell, T. M.: 1987, ‘Surface temperature and transport in Lake Tahoe: inferences from satellite (AVHRR) imagery’, Continental Shelf Res. 7, 1011–1013.Google Scholar
  54. Sverdrup, H. V., Johnson, M. W., and Fleming, R. H.: 1942, The Oceans, Prentice-Hall, Inc., Englewood Cliffs, NJ.Google Scholar
  55. Trenberth, K. E.: 1984, ‘Some effects of finite sample size and persistence on meteorological statistics. Part I: Autocorrelations’, Monthly Weather Review 112, 2359–2368.CrossRefGoogle Scholar
  56. Venables, W. N. and Ripley, B. D.: 1996, Modern Applied Statistics with S-Plus, Springer, New York. 462 pp.Google Scholar
  57. Verburg, P., Hecky, R. E., and Kling, H.: 2003, ‘Ecological consequences of a century of warming in Lake Tanganyika’, Science 301, 505–507.CrossRefPubMedGoogle Scholar
  58. Vollmer, M. K., Bootsma, H., Hecky, R., Patterson, G., Halfman, J., Edmond, J., Eccles, D., and Ande Weiss, R.: 2005, ‘Deep-water warming trend in lake Malawi, East Africa’, Limnol. Oceanogr. 50, 227–233.CrossRefGoogle Scholar
  59. von Storch, H.: 1999, ‘Misuses of Statistical Analysis in Climate Research’, in von Storch, H. and Navarra, A. N. (eds.), Analysis of Climate Variability, Springer-Verlag, New York, pp. 11–26.Google Scholar
  60. Wetzel, R.: 2001, ‘Limnology: Lake and River Ecosystems’ 3rd ed., Academic Press, NY, 1006 pp.Google Scholar
  61. Wolter, K. and Timlin, M. S.: 1998, ‘Measuring the strength of ENSO–how does 1997/98 rank?’, Weather 53, 315–324.Google Scholar
  62. Yue, S., Pilon, P., Philley, B., and Cavadias, G.: 2002, ‘The influence of autocorrelation on the ability to detect trend in hydrologic series’, Hydrol. Processes 16, 1807–1829.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Robert Coats
    • 1
    Email author
  • Joaquim Perez-Losada
    • 2
  • Geoffrey Schladow
    • 3
  • Robert Richards
    • 4
  • Charles Goldman
    • 4
  1. 1.Hydroikos Ltd.BerkeleyUSA
  2. 2.Departament FisicaUniversitat de GironaGironaSpain
  3. 3.Department of Civil and Environmental EngineeringUniversity of CaliforniaDavisUSA
  4. 4.Department of Environmental Science and PolicyUniversity of CaliforniaDavisUSA

Personalised recommendations